Modelling and Optimization of Biotechnological Processes
Artificial Intelligence Approaches
Seiten
2010
Springer Berlin (Verlag)
978-3-642-06792-1 (ISBN)
Springer Berlin (Verlag)
978-3-642-06792-1 (ISBN)
Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di?culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti?cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the ?nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti?cial intelligence, system identi?cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the ?nal product is achieved using modi?ed genetic algorithms to determine optimal feed rate pro?les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e?ective methodology for optimizing biotechnological processes.
Optimization of Fed-batch Culture of Hybridoma Cells using Genetic Algorithms.- On-line Identification and Optimization of Feed Rate Profiles for Fed-batch Culture of Hybridoma Cells.- On-line Softsensor Development for Biomass Measurements using Dynamic Neural Networks.- Optimization of Fed-batch Fermentation Processes using Genetic Algorithms based on Cascade Dynamic Neural Network Models.- Experimental Validation of Cascade Recurrent Neural Network Models.- Designing and Implementing Optimal Control of Fed-batch Fermentation Processes.- Conclusions.
| Erscheint lt. Verlag | 18.11.2010 |
|---|---|
| Reihe/Serie | Studies in Computational Intelligence |
| Zusatzinfo | VIII, 123 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 211 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
| Technik | |
| Schlagworte | algorithm • algorithms • Artificial Intelligence • Biotechnology • Computer-Aided Design (CAD) • Control • Genetic algorithms • Intelligence • linear optimization • Modeling • Monitor • Networks • neural network • Neural networks • Optimization • Simulation |
| ISBN-10 | 3-642-06792-1 / 3642067921 |
| ISBN-13 | 978-3-642-06792-1 / 9783642067921 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 62,95
Buch | Softcover (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 69,95
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15