Theory of Hypergeometric Functions
Seiten
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.
1 Introduction: the Euler-Gauss Hypergeometric Function.- 2 Representation of Complex Integrals and Twisted de Rham Cohomologies.- 3 Hypergeometric functions over Grassmannians.- 4 Holonomic Difference Equations and Asymptotic Expansion References Index.
| Reihe/Serie | Springer Monographs in Mathematics |
|---|---|
| Mitarbeit |
Anhang von: Toshitake Kohno |
| Übersetzer | Kenji Iohara |
| Zusatzinfo | XVI, 320 p. |
| Verlagsort | Tokyo |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 4-431-53912-3 / 4431539123 |
| ISBN-13 | 978-4-431-53912-4 / 9784431539124 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90
Eine anwendungsorientierte Einführung
Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 55,95