Curvature and Topology of Riemannian Manifolds
Springer Berlin (Verlag)
978-3-540-16770-9 (ISBN)
Structure of manifolds of nonpositive sectional curvature.- Combinatorial problems in spectral geometry.- A vanishing theorem for piecewise constant curvature spaces.- L-subgroups in spaces of nonpositive curvature.- On a compactification of the set of Riemannian manifolds with bounded curvatures and diameters.- Large Riemannian manifolds.- Analytic inequalities, and rough isometries between non-compact Riemannian manifolds.- Gap theorems for certain submanifolds of euclidean space and hyperbolic space form II.- A pinching problem for locally homogeneous spaces.- Remarks on the injectivity radius estimate for almost 1/4-pinched manifolds.- Non-homogeneous Kähler-Einstein metrics on compact complex manifolds.- Curvature deformations.- The first eigenvalue of the laplacian of an isoparametric minimal hypersurface in a unit sphere.- On deformation of Riemannian metrics and manifolds with positive curvature operator.- Quasiconformal mappings and manifolds of negative curvature.- Helical immersions.- On topological Blaschke conjecture III.- Critical points of Busemann functions on complete open surfaces.- L-functions in geometry and some applications.- Stability of harmonic maps and eigenvalues of laplacian.- Uniformly locally convex filtrations on complete riemannian manifolds.- Einstein metrics with positive scalar curvature.
| Erscheint lt. Verlag | 1.7.1986 |
|---|---|
| Reihe/Serie | Lecture Notes in Mathematics |
| Zusatzinfo | VI, 336 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 485 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| Schlagworte | compactification • Curvature • Immersion • Isometrie • manifold • SET • Topology |
| ISBN-10 | 3-540-16770-6 / 3540167706 |
| ISBN-13 | 978-3-540-16770-9 / 9783540167709 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich