Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Understanding Real Analysis - Paul Zorn

Understanding Real Analysis

(Autor)

Buch | Hardcover
362 Seiten
2010
A K Peters (Verlag)
978-1-56881-415-5 (ISBN)
CHF 76,75 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Offers an introduction to real analysis. This book develops ideas already familiar from elementary calculus and helps students understand some basic but crucial mathematical ideas, and shows how definitions, proofs, examples, and other forms of mathematical 'apparatus' work together to create a unified theory.
This book is a one-semester text for an introduction to real analysis. The author's primary aims are to develop ideas already familiar from elementary calculus in a rigorous manner and to help students deeply understand some basic but crucial mathematical ideas, and to see how definitions, proofs, examples, and other forms of mathematical "apparatus" work together to create a unified theory. A key feature of the book is that it includes substantial treatment of some foundational material, including general theory of functions, sets, cardinality, and basic proof techniques.

Paul Zorn was born in India and completed his primary and secondary schooling there. He did his undergraduate work at Washington University in St. Louis and his Ph.D., in complex analysis, at the University of Washington, Seattle. Since 1981 he has been on the mathematics faculty at St. Olaf College, in Northfield, Minnesota, where he now chairs the Department of Mathematics, Statistics, and Computer Science.

Preface
1 Preliminaries: Numbers, Sets, Proofs, and Bounds
Numbers 101: The Very Basics
Sets 101: Getting Started
Sets 102: The Idea of a Function
Proofs 101: Proofs and Proof-Writing
Types of Proof
Sets 103: Finite and Infinite Sets; Cardinality
Numbers 102: Absolute Values
Bounds
Numbers 103: Completeness
2 Sequences and Series
SequencesandConvergence
WorkingwithSequences
Subsequences
CauchySequences
Series 101: Basic Ideas
Series 102: Testing for Convergence and Estimating Limits
Limsupandliminf:AGuidedDiscovery
3 Limits and Continuity
LimitsofFunctions
Continuous Functions
WhyContinuityMatters:ValueTheorems
UniformContinuity
4 Derivatives
DefiningtheDerivative
CalculatingDerivatives
TheMeanValueTheorem
SequencesofFunctions
5 Integrals
The Riemann Integral: Definition and Examples
Propertiesof the Integral
Integrability
Some Fundamental Theorems
Solutions

Erscheint lt. Verlag 23.1.2010
Verlagsort Natick
Sprache englisch
Maße 187 x 235 mm
Gewicht 694 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 1-56881-415-1 / 1568814151
ISBN-13 978-1-56881-415-5 / 9781568814155
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95