A Classification Theorem for Homotopy Commutative $H$-Spaces with Finitely Generated $/Bmod 2$ Cohomology Rings
1991
American Mathematical Society (Verlag)
978-0-8218-2514-3 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-2514-3 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Many homological properties of Lie groups are derived strictly from homotopy-theoretic considerations and do not depend on any geometric or analytic structure. An H-space is a topological space having a continuous multiplication with unit. Generalizing from Lie group theory, John Hubbuck proved that a connected, homotopy commutative H-space which is a finite cell complex has the homotopy type of a torus. There are many interesting examples of H-spaces which are not finite complexes - loop spaces are one example. The aim of this book is to prove a version of Hubbuck's theorem in which the condition that the H-space be a finite cell complex is replaced by the condition that it have a finitely-generated mod 2 cohomology ring. The conclusion of the theorem is slightly more general in this case, and some mild associativity hypotheses are required. The method of proof uses established techniques in H-space theory, as well as a new obstruction-theoretic approach to (Araki-Kudo-Dyer-Lashof) homology operations for iterated loop spaces.
| Erscheint lt. Verlag | 30.8.1991 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| Schlagworte | Memoirs of the AMS; No. 449 |
| ISBN-10 | 0-8218-2514-3 / 0821825143 |
| ISBN-13 | 978-0-8218-2514-3 / 9780821825143 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Grundlagen für das Bachelor-Studium
Buch | Hardcover (2023)
Hanser (Verlag)
CHF 55,95