Functional Differential Equations and Approximation of Fixed Points
Numerical continuation methods and bifurcation.- Periodic solutions of some autonomous differential equations with variable time delay.- Global branching and multiplicity results for periodic solutions of functional differential equations.- Existence of oscillating solutions for certain differential equations with delay.- Approximation of delay systems with applications to control and identification.- A homotopy method for locating all zeros of a system of polynomials.- A view of complementary pivot theory (or solving equations with homotopies).- On numerical approximation of fixed points in C[0,1].- An application of simplicial algorithms to variational inequalities.- Delay equations in biology.- Retarded equations with infinite delays.- A degree continuation theorem for a class of compactly perturbed differentiable Fredholm maps of index O.- Chaotic behavior of multidimensional difference equations.- Numerical solution of a generalized eigenvalue problem for even mappings.- Positive solutions of functional differential equations.- A restart algorithm without an artificial level for computing fixed points on unbounded regions.- Path following approaches for solving nonlinear equations: Homotopy, continuous newton and projection.- A nonlinear singularly perturbed volterra functional differential equation.- Periodic solutions of nonlinear autonomous functional differential equations.- The Leray-Schauder continuation method is a constructive element in the numerical study of nonlinear eigenvalue and bifurcation problems.- On computational aspects of topological degree in ?n.- Perturbations in fixed point algorithms.- Bifurcation of a stationary solution of a dynamical system into n-dimensional tori of quasiperiodic solutions.- Periodic solutions of delay-differentialequations.- Hamiltonian triangulations of Rn.- The beer barrel theorem.- On instability, ?-limit sets and periodic solutions of nonlinear autonomous differential delay equations.
| Erscheint lt. Verlag | 1.8.1979 |
|---|---|
| Reihe/Serie | Lecture Notes in Mathematics |
| Zusatzinfo | XVIII, 502 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 717 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
| Mathematik / Informatik ► Mathematik ► Analysis | |
| Schlagworte | Approximation • Approximation / Näherung (Mathematik) • difference equation • Equation • Finite • Fixpunkt (Math.) • Function • Funktional-Differentialgleichung • Ordinary differential equations • Theorem • Variable |
| ISBN-13 | 9783540095187 / 9783540095187 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich