Higher Set Theory
Springer Berlin (Verlag)
978-3-540-08926-1 (ISBN)
Wellordered subclasses of proper classes.- A proof of foundation from axioms of cumulation.- Categoricity with respect to ordinals.- Classically and intuitionistically provably recursive functions.- Hierarchies of sets definably by means of infinitary languages.- Some results on degrees of constructibility.- Constructive universes I.- The evolution of large cardinal axioms in set theory.- Forcing in analysis.- Recursivity and compactness.- Fine structure theory of the constructible universe in ?- and ?-recursion theory.- On a class of models of the n-th order arithmetic.- O and the p-point problem.- A combinatorial characterization of inaccessible cardinals.- Singular cardinals and analytic games.- Regressive functions and stationary sets.- Cardinals in the inner model HOD.- Partitions of the real line into X 1 closed sets.- Gödel numbers of product spaces.- A note on increasing sequences of constructibility degrees.
| Erscheint lt. Verlag | 1.9.1978 |
|---|---|
| Reihe/Serie | Lecture Notes in Mathematics |
| Zusatzinfo | X, 110 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 216 x 279 mm |
| Gewicht | 685 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
| Schlagworte | arithmetic • Function • Menge (Math.) • ordinal • Proof • Recursion • well-ordering principle |
| ISBN-10 | 3-540-08926-8 / 3540089268 |
| ISBN-13 | 978-3-540-08926-1 / 9783540089261 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich