Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Knowledge-Infused Learning - Manas Gaur, Amit P. Sheth

Knowledge-Infused Learning

Neurosymbolic AI for Explainability, Interpretability, and Safety
Buch | Hardcover
310 Seiten
2026
Cambridge University Press (Verlag)
978-1-009-51374-6 (ISBN)
CHF 104,75 inkl. MwSt
  • Noch nicht erschienen (ca. März 2026)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This practical guidebook introduces an emerging field that confronts the opacity of current 'black-box' AI models. Knowledge-infused learning combines machine learning and symbolic AI to make AI safer and more explainable, which is vital for applications in human-critical contexts such as healthcare, law, and finance.
Knowledge-infused learning directly confronts the opacity of current 'black-box' AI models by combining data-driven machine learning techniques with the structured insights of symbolic AI. This guidebook introduces the pioneering techniques of neurosymbolic AI, which blends statistical models with symbolic knowledge to make AI safer and user-explainable. This is critical in high-stakes AI applications in healthcare, law, finance, and crisis management. The book brings readers up to speed on advancements in statistical AI, including transformer models such as BERT and GPT, and provides a comprehensive overview of weakly supervised, distantly supervised, and unsupervised learning methods alongside their knowledge-enhanced variants. Other topics include active learning, zero-shot learning, and model fusion. Beyond theory, the book presents practical considerations and applications of neurosymbolic AI in conversational systems, mental health, crisis management systems, and social and behavioral sciences, making it a pragmatic reference for AI system designers in academia and industry.

Manas Gaur is an assistant professor in the Department of Computer Science and Electrical Engineering at the University of Maryland, Baltimore County (UMBC). He earned his Ph.D. in 2022 from the University of South Carolina's Artificial Intelligence Institute, studying under Dr. Amit P. Sheth. A pioneer in knowledge-infused learning (2016–2022), Gaur's research has earned multiple best paper awards and recognition through USC Eminent Profiles and AAAI New Faculty Highlights. His cutting-edge work continues to attract major funding, including grants from NSF and EPSRC-UKRI in partnership with the Alan Turing Institute. Amit P. Sheth is the NCR Chair and Professor of Computer Science and Engineering at the University of South Carolina, where he founded the university-wide AI Institute in 2019 and grew it to nearly 50 AI researchers in four years. He is a fellow of IEEE, AAAI, AAAS, ACM, and AIAA. His awards include the IEEE CS Wallace McDowell Award and the IEEE TCSVC Research Innovation Award. He has co-founded four companies, run two of them, and advised or mentored over 45 Ph.D. candidates and postdocs to exceptional careers in academia, industry, and as entrepreneurs.

1. Introduction; 2. Knowledge graphs for explainability and interpretability; 3. Knowledge-infused learning: the subsumer to neurosymbolic AI; 4. Shallow infusion of knowledge; 5. Semi-deep infusion learning; 6. Deep knowledge-infused learning; 7. Process knowledge-infused learning; 8. Knowledge-infused conversational NLP; 9. Neurosymbolic large language models; References; Index.

Erscheint lt. Verlag 31.3.2026
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Themenwelt Geisteswissenschaften Psychologie
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-009-51374-5 / 1009513745
ISBN-13 978-1-009-51374-6 / 9781009513746
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20