Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Machine Learning Methods for Stylometry (eBook)

Authorship Attribution and Author Profiling

(Autor)

eBook Download: PDF
2020 | 1st ed. 2020
286 Seiten
Springer International Publishing (Verlag)
978-3-030-53360-1 (ISBN)

Lese- und Medienproben

Machine Learning Methods for Stylometry - Jacques Savoy
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents methods and approaches used to identify the true author of a doubtful document or text excerpt. It provides a broad introduction to all text categorization problems (like authorship attribution, psychological traits of the author, detecting fake news, etc.) grounded in stylistic features. Specifically, machine learning models as valuable tools for verifying hypotheses or revealing significant patterns hidden in datasets are presented in detail. Stylometry is a multi-disciplinary field combining linguistics with both statistics and computer science.

The content is divided into three parts. The first, which consists of the first three chapters, offers a general introduction to stylometry, its potential applications and limitations. Further, it introduces the ongoing example used to illustrate the concepts discussed throughout the remainder of the book. The four chapters of the second part are more devoted to computer science with a focus on machine learning models. Their main aim is to explain machine learning models for solving stylometric problems. Several general strategies used to identify, extract, select, and represent stylistic markers are explained. As deep learning represents an active field of research, information on neural network models and word embeddings applied to stylometry is provided, as well as a general introduction to the deep learning approach to solving stylometric questions. In turn, the third part illustrates the application of the previously discussed approaches in real cases: an authorship attribution problem, seeking to discover the secret hand behind the nom de plume Elena Ferrante, an Italian writer known worldwide for her My Brilliant Friend's saga; author profiling in order to identify whether a set of tweets were generated by a bot or a human being and in this second case, whether it is a man or a woman; and an exploration of stylistic variations over time using US political speeches covering a period of ca. 230 years.

A solutions-based approach is adopted throughout the book, and explanations are supported by examples written in R. To complement the main content and discussions on stylometric models and techniques, examples and datasets are freely available at the author's Github website.

Jacques Savoy is a Full Professor of Computer Science at the University of Neuchatel (Switzerland). His research interests mainly include natural language processing and particularly information retrieval for languages other than English (European, Asian, and Indian) as well as multilingual and cross-lingual information retrieval. For many years he has participated in various evaluations campaigns (TREC, CLEF, NTCIR, FIRE) dealing with these questions. His current research interests focus on the statistical modeling and evaluation of natural language processing such as text clustering and categorization, as well as authorship attribution.

Erscheint lt. Verlag 28.9.2020
Zusatzinfo XIX, 286 p. 111 illus., 101 illus. in color.
Sprache englisch
Themenwelt Geisteswissenschaften Sprach- / Literaturwissenschaft
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Author profiling • authorship attribution • Information Retrieval • machine learning • Natural Language Processing • Quantitative linguistics • stylometry • text analysis
ISBN-10 3-030-53360-3 / 3030533603
ISBN-13 978-3-030-53360-1 / 9783030533601
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55