Über Ellipsen auf einem Ellipsoid, deren Axen gegebenen einfachen Bedingungen genügen, insbesondere über kongruente Ellipsen
De Gruyter (Verlag)
978-3-11-232617-6 (ISBN)
Frontmatter -- VORWORT -- INHALT -- § 1. Axenkomplex -- § 2. Axen, Inhalt und Asymptotenwinkel der Ellipse, welche eine gegebene Ebene aus einem gegebenen Ellipsoid ausschneidet -- § 3. Axen einer Ellipse auf dem Ellipsoid, deren Mittelpunkt gegeben ist -- § 4. Ort der Mittelpunkte von Ellipsen auf einem Ellipsoid, welche die eine Axe gleich einer gegebenen Länge haben -- § 5. Einhüllende der Ebenen von Ellipsen, welche auf einem Ellipsoid liegen, die eine Axe gleich haben, und deren Ebenen ein ihm ähnliches, ähnlich liegendes und konzentrisches Ellipsoid berühren -- § 6. Flächengleiche Ellipsen auf einem Ellipsoid -- § 7. Ort der Mittelpunkte und Pole von ähnlichen Ellipsen auf einem Ellipsoid -- § 8. Beziehungen, welche zwischen den Axen zweier benachbarter Ellipsen auf einem Ellipsoid bestehen -- § 9. Geometrische Deutung der im § 8 gefundenen Bedingungen -- § 10. Ort der Mittelpunkte und Pole kongruenter Ellipsen auf einem Ellipsoid -- § 11. Einhüllende von Ellipsen, die auf einem Ellipsoid liegen und einer gegebenen Ellipse kongruent sind. (Kurven x = const.) -- § 12. Die Kurven ?. = const -- § 13. Ort der Punkte, in welchen sich die Ebenen von drei benachbarten kongruenten Ellipsen auf einem Ellipsoid schneiden -- § 14. Über die Gestalt einer Kurve x = const. Anzahl der reellen kongruenten Ellipsen, welche durch einen gegebenen Punkt des Ellipsoides gehen -- Tafel 1 -- Tafel 2
Frontmatter -- VORWORT -- INHALT --
1. Axenkomplex --
2. Axen, Inhalt und Asymptotenwinkel der Ellipse, welche eine gegebene Ebene aus einem gegebenen Ellipsoid ausschneidet --
3. Axen einer Ellipse auf dem Ellipsoid, deren Mittelpunkt gegeben ist --
4. Ort der Mittelpunkte von Ellipsen auf einem Ellipsoid, welche die eine Axe gleich einer gegebenen Länge haben --
5. Einhüllende der Ebenen von Ellipsen, welche auf einem Ellipsoid liegen, die eine Axe gleich haben, und deren Ebenen ein ihm ähnliches, ähnlich liegendes und konzentrisches Ellipsoid berühren --
6. Flächengleiche Ellipsen auf einem Ellipsoid --
7. Ort der Mittelpunkte und Pole von ähnlichen Ellipsen auf einem Ellipsoid --
8. Beziehungen, welche zwischen den Axen zweier benachbarter Ellipsen auf einem Ellipsoid bestehen --
9. Geometrische Deutung der im
8 gefundenen Bedingungen --
10. Ort der Mittelpunkte und Pole kongruenter Ellipsen auf einem Ellipsoid --
11. Einhüllende von Ellipsen, die auf einem Ellipsoid liegen und einer gegebenen Ellipse kongruent sind. (Kurven x = const.) --
12. Die Kurven ?. = const --
13. Ort der Punkte, in welchen sich die Ebenen von drei benachbarten kongruenten Ellipsen auf einem Ellipsoid schneiden --
14. Über die Gestalt einer Kurve x = const. Anzahl der reellen kongruenten Ellipsen, welche durch einen gegebenen Punkt des Ellipsoides gehen -- Tafel 1 -- Tafel 2
| Erscheinungsdatum | 16.03.2021 |
|---|---|
| Zusatzinfo | 2 plates |
| Verlagsort | Berlin/Boston |
| Sprache | deutsch |
| Maße | 155 x 230 mm |
| Gewicht | 251 g |
| Themenwelt | Sachbuch/Ratgeber ► Natur / Technik |
| Geisteswissenschaften | |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| Schlagworte | ellipsen • Geisteswissenschaften allgemein • Geometry • Geometry and Topology • Mathematics • Mathematik |
| ISBN-10 | 3-11-232617-2 / 3112326172 |
| ISBN-13 | 978-3-11-232617-6 / 9783112326176 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich