Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Instrumentation Reference Book -

Instrumentation Reference Book (eBook)

Walt Boyes (Herausgeber)

eBook Download: PDF | EPUB
2009 | 4. Auflage
928 Seiten
Elsevier Science (Verlag)
978-0-08-094188-2 (ISBN)
170,00 € (CHF 165,95)
Systemvoraussetzungen
168,44 € (CHF 164,55)
Systemvoraussetzungen
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Instrumentation embraces the equipment and systems used to detect, track and store data related to physical, chemical, electrical, thermal and mechanical properties of materials, systems and operations. While traditionally a key area within mechanical and industrial engineering, it also has a strong presence in electrical, chemical, civil and environmental engineering, biomedical and aerospace engineering. The discipline of Instrumentation has grown appreciably in recent years because of advances in sensor technology and in the inter-connectivity of sensors, computers and control systems. In turn, this has meant that the automation of manufacturing, process industries, and even building and infrastructure construction has been improved dramatically. And now with remote wireless instrumentation, heretofore inaccessible or widely dispersed operations and procedures can be automatically monitored and controlled.

The new 4th edition of this already well-established reference work, will reflect these dramatic changes with improved and expanded coverage of the both the traditional domains of instrumentation as well as the cutting edge areas of digital integration of complex sensor/control systems.


Thoroughly revised, with up-to-date coverage of wireless sensors and systems, as well as nanotechnologies role in the evolution of sensor technology

Latest information on new sensor equipment, new measurement standards, and new software for embedded control systems, networking and automated control

Three entirely new sections on Controllers, Actuators and Final Control Elements, Manufacturing Execution Systems, and Automation Knowledge Base

Up-dated and expanded references and critical standards

The discipline of instrumentation has grown appreciably in recent years because of advances in sensor technology and in the interconnectivity of sensors, computers and control systems. This 4e of the Instrumentation Reference Book embraces the equipment and systems used to detect, track and store data related to physical, chemical, electrical, thermal and mechanical properties of materials, systems and operations. While traditionally a key area within mechanical and industrial engineering, understanding this greater and more complex use of sensing and monitoring controls and systems is essential for a wide variety of engineering areas--from manufacturing to chemical processing to aerospace operations to even the everyday automobile. In turn, this has meant that the automation of manufacturing, process industries, and even building and infrastructure construction has been improved dramatically. And now with remote wireless instrumentation, heretofore inaccessible or widely dispersed operations and procedures can be automatically monitored and controlled. This already well-established reference work will reflect these dramatic changes with improved and expanded coverage of the traditional domains of instrumentation as well as the cutting-edge areas of digital integration of complex sensor/control systems. Thoroughly revised, with up-to-date coverage of wireless sensors and systems, as well as nanotechnologies role in the evolution of sensor technology Latest information on new sensor equipment, new measurement standards, and new software for embedded control systems, networking and automated control Three entirely new sections on Controllers, Actuators and Final Control Elements; Manufacturing Execution Systems; and Automation Knowledge Base Up-dated and expanded references and critical standards

Front Cover 1
Title Page 4
Copyright Page 5
Table of Contents 6
Preface 18
Contributors 20
Introduction 22
Part I. The Automation Knowledge Base 24
Chapter 1. The Automation Practicum 26
1.1 Introduction 26
1.2 Job Descriptions 27
1.3 Careers and Career Paths 27
1.3.1 ISA Certified Automation Professional (CAP) Classification System 28
1.4 Where Automation Fits in the Extended Enterprise 36
1.5 Manufacturing Execution Systems and Manufacturing Operations Management 37
1.5.1 Introduction 37
1.5.2 Manufacturing Execution Systems (MES) and Manufacturing Operations Management (MOM) 38
1.5.3 The Connected Enterprise 38
Suggested Reading 41
Chapter 2. Basic Principles of Industrial Automation 42
2.1 Introduction 42
2.2 Standards 42
2.3 Sensor and System Design, Installation, and Commissioning 43
2.3.1 The Basics 43
2.3.2 Identification of the Application 43
2.3.3 Selection of the Appropriate Sensor/Transmitter 43
2.3.4 Selection of the Final Control Element 43
2.3.5 Selection of the Controller and Control Methodology 43
2.3.6 Design of the Installation 43
2.3.7 Installing, Commissioning, and Calibrating the System 44
2.4 Maintenance and Operation 44
2.4.1 Introduction 44
2.4.2 Life-cycle Optimization 44
2.4.3 Reliability Engineering 44
2.4.4 Asset Management, Asset Optimization, and Plant Optimization 44
Suggested Reading 44
Chapter 3. Measurement Methods and Control Strategies 46
3.1 Introduction 46
3.2 Measurement and Field Calibration Methodology 46
3.3 Process Control Strategies 46
3.4 Advanced Control Strategies 47
Suggested Reading 47
Chapter 4. Simulation and Design Software 48
4.1 Introduction 48
4.2 Simulation 48
4.3 Best Practices for Simulation Systems in Automation 48
4.4 Ground-up Testing and Training 49
4.5 Simulation System Selection 49
4.6 Simulation for Automation in the Validated Industries 49
4.7 Conclusion 49
Chapter 5. Security for Industrial Automation 50
5.1 The Security Problem 50
5.2 An Analysis of the Security Needs of Industrial Automation 51
5.3 Some Recommendations for Industrial Automation Security 51
Part II. Mechanical Measurements 52
Chapter 6. Measurement of Flow 54
6.1 Introduction 54
6.2 Basic Principles of Flow Measurement 54
6.2.1 Streamlined and Turbulent Flow 54
6.2.2 Viscosity 55
6.2.3 Bernoulli’s Theorem 56
6.2.4 Practical Realization of Equations 57
6.2.5 Modification of Flow Equations to Apply to Gases 58
6.3 Fluid Flow in Closed Pipes 59
6.3.1 Differential-Pressure Devices 59
6.3.2 Rotating Mechanical Meters for Liquids 66
6.3.3 Rotating Mechanical Meters for Gases 71
6.3.4 Electronic Flowmeters 74
6.3.5 Mass Flowmeters 81
6.4 Flow in Open Channels 83
6.4.1 Head/Area Method 83
6.4.2 Velocity/Area Methods 86
6.4.3 Dilution Gauging 87
6.5 Point Velocity Measurement 87
6.5.1 Laser Doppler Anemometer 87
6.5.2 Hotwire Anemometer 87
6.5.3 Pitot Tube 87
6.5.4 Electromagnetic Velocity Probe 88
6.5.5 Insertion Turbine 88
6.5.6 Propeller-Type Current Meter 89
6.5.7 Insertion Vortex 89
6.5.8 Ultrasonic Doppler Velocity Probe 89
6.6 Flowmeter Calibration Methods 89
6.6.1 Flowmeter Calibration Methods for Liquids 89
6.6.2 Flowmeter Calibration Methods for Gases 90
References 91
Further Reading 91
Chapter 7. Measurement of Viscosity 92
7.1 Introduction 92
7.2 Newtonian and Non-Newtonian behavior 92
7.3 Measurement of the Shear Viscosity 94
7.3.1 Capillary Viscometer 94
7.3.2 Couette Viscometer 95
7.3.3 Cone-and-plate Viscometer 95
7.3.4 Parallel-plate Viscometer 96
7.4 Shop-Floor Viscometers 96
7.5 Measurement of the Extensional Viscosity 97
7.6 Measurement of Viscosity Underextremes of Temperature and Pressure 97
7.7 Online Measurements 97
7.8 Accuracy and Range 97
References 98
Further Reading 98
Chapter 8. Measurement of Length 100
8.1 Introduction 100
8.2 The Nature of Length 101
8.3 Derived Measurements 102
8.3.1 Derived from Length Measurement Alone 102
8.4 Standards and Calibration of Length 103
8.5 Practice of Length Measurement for Industrial Use 104
8.5.1 General Remarks 104
8.5.2 Mechanical Length-Measuring Equipment 104
8.5.3 Electronic Length Measurement 105
8.5.4 Use of Electromagnetic and Acoustic Radiation 110
8.5.5 Miscellaneous Methods 113
8.6 Automatic Gauging Systems 114
References 115
Further Reading 115
Chapter 9. Measurement of Strain 116
9.1 Strain 116
9.2 Bonded Resistance Strain Gauges 116
9.2.1 Wire Gauges 117
9.2.2 Foil Gauges 117
9.2.3 Semiconductor Gauges 117
9.2.4 Rosettes 118
9.2.5 Residual Stress Measurement 118
9.3 Gauge Characteristics 118
9.3.1 Range 118
9.3.2 Cross-sensitivity 119
9.3.3 Temperature Sensitivity 119
9.3.4 Response Times 119
9.4 Installation 119
9.5 Circuits for Strain Gauges 121
9.6 Vibrating Wire Strain Gauge 121
9.7 Capacitive Strain Gauges 122
9.8 Surveys of Whole Surfaces 122
9.8.1 Brittle Lacquer 122
9.8.2 Patterns on Surfaces 122
9.9 Photoelasticity 123
References 124
Chapter 10. Measurement of Level and Volume 126
10.1 Introduction 126
10.2 Practice of Level Measurement 126
10.2.1 Installation 126
10.2.2 Sources of Error 127
10.3 Calibration of Level-Measuring Systems 129
10.4 Methods Providing Full-Range Level Measurement 130
10.4.1 Sight Gauges 130
10.4.2 Float-driven Instruments 130
10.4.3 Capacitance Probes 131
10.4.4 Upthrust Buoyancy 132
10.4.5 Pressure Sensing 132
10.4.6 Microwave and Ultrasonic, Time-Transit Methods 132
10.4.7 Force or Position Balance 133
10.5 Methods Providing Short-Range Detection 133
10.5.1 Magnetic 133
10.5.2 Electrical Conductivity 133
10.5.3 Infrared 134
10.5.4 Radio Frequency 134
10.5.5 Miscellaneous Methods 135
References 135
Chapter 11. Vibration 136
11.1 Introduction 136
11.1.1 Physical Considerations 136
11.1.2 Practical Problems of Installation 139
11.1.3 Areas of Application 139
11.2 Amplitude Calibration 140
11.2.1 Accelerometer Calibration 140
11.2.2 Shock Calibration 140
11.2.3 Force Calibration 140
11.3 Sensor Practice 141
11.3.1 Mass-Spring Seismic Sensors 141
11.3.2 Displacement Measurement 143
11.3.3 Velocity Measurement 143
11.3.4 Acceleration Measurement 144
11.3.5 Measurement of Shock 147
11.4 Literature 147
References 148
Further Reading 148
Chapter 12. Measurement of Force 150
12.1 Basic Concepts 150
12.2 Force Measurement Methods 150
12.3 Lever-balance Methods 150
12.3.1 Equal-lever Balance 150
12.3.2 Unequal-lever Balance 151
12.3.3 Compound Lever Balance 151
12.4 Force-Balance Methods 151
12.5 Hydraulic Pressure Measurement 152
12.6 Acceleration Measurement 152
12.7 Elastic Elements 152
12.7.1 Spring Balances 152
12.7.2 Proving Rings 152
12.7.3 Piezoelectric Transducers 153
12.7.4 Strain-gauge Load Cells 153
12.8 Further Developments 156
References 156
Chapter 13. Measurement of Density 158
13.1 General 158
13.2 Measurement of Density Using Weight 158
13.3 Measurement of Density Using Buoyancy 159
13.4 Measurement of Density Using a  Hydrostatic Head 160
13.4.1 General Differential Pressure Transmitter Methods 160
13.4.2 DP Transmitter with Overflow Tank 161
13.4.3 DP Transmitter with a Wet Leg 161
13.4.4 DP Transmitter with a Pressure Repeater 162
13.4.5 DP Transmitter with Flanged or Extended Diaphragm 162
13.4.6 DP Transmitter with Pressure Seals 162
13.4.7 DP Transmitter with Bubble Tubes 162
13.4.8 Other Process Considerations 163
13.5 Measurement of Density Using Radiation 163
13.6 Measurement of Density Using Resonant Elements 163
13.6.1 Liquid Density Measurement 163
13.6.2 Gas Density Measurements 164
13.6.3 Relative Density of Gases 166
Further Reading 166
Chapter 14. Measurement of Pressure 168
14.1 What is Pressure? 168
14.2 Pressure Measurement 168
14.2.1 Pressure Measurements by Balancing a Column of Liquid of Known Density 168
14.2.2 Pressure Measurements by Allowing the Unknown Pressure to Act on a Known Area and Measuring the Resultant Force 170
14.2.3 Pressure Measurement by Allowing the Unknown Pressure to Act on a Flexible Member and Measuring the Resultant Motion 172
14.2.4 Pressure Measurement by Allowing the Unknown Pressure to Act on an Elastic Member and Measuring the Resultant Stress or Strain 178
14.3 Pressure Transmitters 181
14.3.1 Pneumatic Motion-Balance Pressure Transmitters 182
14.3.2 Pneumatic Force-Balance Pressure Transmitters 182
14.3.3 Force-Measuring Pressure Transmitters 183
14.3.4 Digital Pressure Transducers 185
References 186
Further Reading 186
Chapter 15. Measurement of Vacuum 188
15.1 Introduction 188
15.1.1 Systems of Measurement 188
15.1.2 Methods of Measurement 188
15.1.3 Choice of Nonabsolute Gauges 189
15.1.4 Accuracy of Measurement 189
15.2 Absolute Gauges 189
15.2.1 Mechanical Gauges 189
15.2.2 Liquid Manometers 190
15.2.3 The McLeod Gauge (1878) 190
15.3 Nonabsolute Gauges 192
15.3.1 Thermal Conductivity Gauges 192
15.3.2 Ionization Gauges 193
References 196
Chapter 16. Particle Sizing 198
16.1 Introduction 198
16.2 Characterization of Particles 198
16.2.1 Statistical Mean Diameters 199
16.3 Terminal Velocity 199
16.4 Optical Effects Caused by Particles 200
16.5 Particle Shape 200
16.6 Methods for Characterizing a Group of Particles 201
16.6.1 Gaussian or Normal Distributions 201
16.6.2 Log-Normal Distributions 202
16.6.3 Rosin–Rammler Distributions 203
16.7 Analysis Methods that Measure Size Directly 203
16.7.1 Sieving 203
16.7.2 Microscope Counting 204
16.7.3 Direct Optical Methods 206
16.8 Analysis Methods that Measure Terminal Velocity 206
16.8.1 Sedimentation 206
16.8.2 Elutriation 210
16.8.3 Impaction 211
16.9 Analysis Methods that Infer Size from some other Property 211
16.9.1 Coulter Counter 211
16.9.2 Hiac Automatic Particle Sizer 211
16.9.3 Climet 212
16.9.4 Adsorption Methods 212
References 212
Further Reading 212
Chapter 17. Fiber Optics in Sensor Instrumentation 214
17.1 Introduction 214
17.2 Principles of Optical Fiber Sensing 215
17.2.1 Sensor Classification 215
17.2.2 Modulation Parameters 215
17.2.3 Performance Criteria 216
17.3 Interferometric Sensing Approach 216
17.3.1 Heterodyne Interferometry 217
17.3.2 Pseudoheterodyne Interferometry 217
17.3.3 White-Light Interferometry 218
17.3.4 Central Fringe Identification 224
17.4 Doppler Anemometry 225
17.4.1 Introduction 225
17.4.2 Particle Size 226
17.4.3 Fluid Flow 227
17.4.4 Vibration Monitoring 229
17.5 In-Fiber Sensing Structures 233
17.5.1 Introduction 233
17.5.2 Fiber Fabry–Perot Sensing Element 233
17.5.3 Fiber Bragg Grating Sensing Element 235
References 238
Chapter 18. Nanotechnology for Sensors 240
18.1 Introduction 240
18.2 What is Nanotechnology? 240
18.3 Nanotechnology for Pressure Transmitters 240
18.4 Microelectromechanical Systems (MEMS) 240
18.5 MEMS Sensors Today 241
Chapter 19. Microprocessor-Based and Intelligent Transmitters 242
19.1 Introduction 242
19.2 Terminology 243
19.3 Background Information 244
19.4 Attributes and Features of Microprocessor-based and Intelligent Transmitters 245
19.4.1 Microprocessor-Based Features 245
19.4.2 Intelligent Features 246
19.5 Microprocessor-Based and Intelligent Temperature Transmitters 247
19.6 Microprocessor-Based and Intelligent Pressure and Differential Transmitters 249
19.7 Microprocessor-Based and Intelligent Flowmeters 252
19.7.1 Coriolis Mass Flowmeters 252
19.7.2 Electromagnetic Flowmeters 256
19.7.3 Vortex Flowmeters 257
19.8 Other Microprocessor-Based and Intelligent Transmitters 259
19.8.1 Density Transmitters 259
19.8.2 Microprocessor-Based and Intelligent Liquid Level Measurement Systems 262
19.9 Other Microprocessor-Based and Intelligent Measurement Systems 263
19.10 Fieldbus 264
19.10.1 Background 264
19.10.2 Introduction to the Concept of a Fieldbus 264
19.10.3 Current Digital Multiplexing Technology 264
19.10.4 The HART Protocol 266
19.11 User Experience with Microprocessor-Based and Intelligent Transmitters 269
19.12 Fieldbus Function and Benefits 270
19.12.1 Foundation Fieldbus and Profibus-PA 270
19.12.2 Field-Mounted Control 271
19.12.3 Future of Analog Instruments 272
19.12.4 Sensor Validation 272
19.12.5 Plant Diagnostics 272
19.12.6 Handheld Interfaces (Handheld Terminals or Handheld Communicators) 272
19.12.7 Measuring Directives 273
19.12.8 Further Developments of Intelligent Transmitters 273
19.12.9 Integration of Intelligent Transmitters into Instrument Management Systems 273
References 274
Chapter 20. Industrial Wireless Technology and Planning 276
20.1 Introduction 276
20.2 The History of Wireless 276
20.3 The Basics 277
20.3.1 Radio Frequency Signals 277
20.3.2 Radio Bands 277
20.3.3 Radio Noise 278
20.3.4 Radio Signal-to-Noise Ratio (SNR) 278
20.3.5 Wireless Reliability 279
20.3.6 Fixed Frequencies 279
20.3.7 Spread Spectrum 279
20.3.8 Security 280
20.3.9 Antennas 281
20.3.10 Antenna Connection 283
20.3.11 Commissioning 284
20.3.12 Mesh Technologies 285
20.3.13 System Management 285
20.3.14 System Interfaces 285
20.3.15 Standards and Specifications 286
20.4 Planning for Wireless 286
20.4.1 Imagine the Possibilities 287
20.4.2 Getting Ready for Wireless 287
References 288
Part III. Measurement of Temperature and Chemical Composition 290
Chapter 21. Temperature Measurement 292
21.1 Temperature and Heat 292
21.1.1 Application Considerations 292
21.1.2 Definitions 292
21.1.3 Radiation 294
21.2 Temperature Scales 295
21.2.1 Celsius Temperature Scale 295
21.2.2 Kelvin, Absolute, or Thermodynamic Temperature Scale 295
21.2.3 International Practical Temperature Scale of 1968 (IPTS-68) 296
21.2.4 Fahrenheit and Rankine Scales 296
21.2.5 Realization of Temperature Measurement 297
21.3 Measurement Techniques: Direct Effects 297
21.3.1 Liquid-in-Glass Thermometers 297
21.3.2 Liquid-Filled Dial Thermometers 301
21.3.3 Gas-Filled Instruments 304
21.3.4 Vapor Pressure Thermometers 305
21.3.5 Solid Expansion 308
21.4 Measurement Techniques: Electrical 309
21.4.1 Resistance Thermometers 309
21.4.2 Thermistors 313
21.4.3 Semiconductor Temperature Measurement 314
21.5 Measurement Techniques: Thermocouples 316
21.5.1 Thermoelectric Effects 316
21.5.2 Thermocouple Materials 322
21.5.3 Thermocouple Construction 324
21.6 Measurement Techniques: Radiation Thermometers 329
21.6.1 Introduction 329
21.6.2 Radiation Thermometer Types 330
21.7 Temperature Measurement Considerations 342
21.7.1 Readout 342
21.7.2 Sensor Location Considerations 343
21.7.3 Miscellaneous Measurement Techniques 347
References 349
Further Reading 349
Chapter 22. Chemical Analysis: Introduction 350
22.1 Introduction to Chemical Analysis 350
22.2 Chromatography 351
22.2.1 General Chromatography 351
22.2.2 Paper Chromatography and Thin-Layer Chromatography 351
22.3 Polarography and Anodic Stripping Voltammetry 354
22.3.1 Polarography 354
22.3.2 Anodic Stripping Voltammetry 357
22.4 Thermal Analysis 358
Further Reading 362
Chapter 23. Chemical Analysis: Spectroscopy 364
23.1 Introduction 364
23.2 Absorption and Reflection Techniques 364
23.2.1 Infrared 364
23.2.2 Absorption in UV, Visible, and IR 369
23.2.3 Absorption in the Visible and Ultraviolet 371
23.2.4 Measurements Based on Reflected Radiation 371
23.2.5 Chemiluminescence 372
23.3 Atomic Techniques: Emission, Absorption, and Fluorescence 372
23.3.1 Atomic Emission Spectroscopy 372
23.3.2 Atomic Absorption Spectroscopy 374
23.3.3 Atomic Fluorescence Spectroscopy 375
23.4 X-ray Spectroscopy 376
23.4.1 X-ray Fluorescence Spectroscopy 376
23.4.2 X-ray Diffraction 378
23.5 Photo-Acoustic Spectroscopy 378
23.6 Microwave Spectroscopy 378
23.6.1 Electron Paramagnetic Resonance (EPR) 379
23.6.2 Nuclear Magnetic Resonance Spectroscopy 380
23.7 Neutron Activation 380
23.8 Mass Spectrometers 380
23.8.1 Principle of the Classical Instrument 381
23.8.2 Inlet Systems 382
23.8.3 Ion Sources 382
23.8.4 Separation of the Ions 382
23.8.5 Other Methods of Separation of Ions 384
References 385
Further Reading 385
Chapter 24. Chemical Analysis: Electrochemical Techniques 386
24.1 Acids and Alkalis 386
24.2 Ionization of Water 387
24.3 Electrical Conductivity 387
24.3.1 Electrical Conduction in Liquids 387
24.3.2 Conductivity of Solutions 388
24.3.3 Practical Measurement of Electrical Conductivity 388
24.3.4 Applications of Conductivity Measurement 395
24.4 The Concept of pH 398
24.4.1 General Theory 398
24.4.2 Practical Specification of a pH Scale 399
24.4.3 pH Standards 399
24.4.4 Neutralization 399
24.4.5 Hydrolysis 399
24.4.6 Common Ion Effect 401
24.4.7 Buffer Solutions 401
24.5 Electrode Potentials 401
24.5.1 General Theory 401
24.5.2 Variation of Electrode Potential with Ion Activity (The Nernst Equation) 403
24.6 Ion-Selective Electrodes 403
24.6.1 Glass Electrodes 404
24.6.2 Solid-State Electrodes 404
24.6.3 Heterogeneous Membrane Electrodes 404
24.6.4 Liquid Ion Exchange Electrodes 404
24.6.5 Gas-Sensing Membrane Electrodes 404
24.6.6 Redox Electrodes 405
24.7 Potentiometry and Specific Ion Measurement 405
24.7.1 Reference Electrodes 405
24.7.2 Measurement of pH 407
24.7.3 Measurement of Redox Potential 413
24.7.4 Determination of Ions by Ion-Selective Electrodes 413
24.8 Common Electrochemical Analyzers 416
24.8.1 Residual Chlorine Analyzer 416
24.8.2 Polarographic Process Oxygen Analyzer 418
24.8.3 High-temperature Ceramic Sensor Oxygen Probes 419
24.8.4 Fuel Cell Oxygen-measuring Instruments 420
24.8.5 Hersch Cell for Oxygen Measurement 420
24.8.6 Sensor for Oxygen Dissolved in Water 420
24.8.7 Coulometric Measurement of Moisture in Gases and Liquids 422
Further Reading 422
Chapter 25. Chemical Analysis: Gas Analysis 424
25.1 Introduction 424
25.2 Separation of Gaseous Mixtures 425
25.2.1 Gas Chromatography 425
25.3 Detectors 427
25.3.1 Thermal Conductivity Detector (TCD) 427
25.3.2 Flame Ionization Detector (FID) 429
25.3.3 Photo-Ionization Detector (PID) 430
25.3.4 Helium Ionization Detector 431
25.3.5 Electron Capture Detector 432
25.3.6 Flame Photometric Detector (FPD) 432
25.3.7 Ultrasonic Detector 433
25.3.8 Catalytic Detector (Pellistor) 434
25.3.9 Semiconductor Detector 434
25.3.10 Properties and Applications of Gas Detectors 435
25.4 Process Chromatography 435
25.4.1 Sampling System 437
25.4.2 Carrier Gas 439
25.4.3 Chromatographic Column 440
25.4.4 Controlled Temperature Enclosures 440
25.4.5 Detectors 440
25.4.6 Programmers 441
25.4.7 Data-Processing Systems 441
25.4.8 Operation of a Typical Process Chromatograph 442
25.5 Special Gas Analyzers 444
25.5.1 Paramagnetic Oxygen Analyzers 444
25.5.2 Ozone Analyzer 447
25.5.3 Oxides of Nitrogen Analyzer 448
25.5.4 Summary of Special Gas Analyzers 449
25.6 Calibration of Gas Analyzers 449
25.6.1 Static Methods 450
25.6.2 Dynamic Methods 450
Further Reading 451
Chapter 26. Chemical Analysis: Moisture Measurement 452
26.1 Introduction 452
26.2 Definitions 452
26.2.1 Gases 452
26.2.2 Liquids and Solids 453
26.3 Measurement Techniques 454
26.3.1 Gases 454
26.3.2 Liquids 456
26.3.3 Solids 457
26.4 Calibration 458
26.4.1 Gases 458
26.4.2 Liquids 459
26.4.3 Solids 459
References 459
Part IV. Electrical and Radiation Measurements 460
Chapter 27. Electrical Measurements 462
27.1 Units and Standards of Electrical Measurement 462
27.1.1 SI Electrical Units 462
27.1.2 Realization of the SI Base Unit 462
27.1.3 National Primary Standards 463
27.2 Measurement of DC and AC Current and Voltage Using Indicating Instruments 467
27.2.1 Permanent Magnet-Moving Coil Instruments 468
27.2.2 Moving-Iron Instruments 471
27.2.3 AC Range Extension Using Current and Voltage Transformers 475
27.2.4 Dynamometer Instruments 477
27.2.5 Thermocouple Instruments 477
27.2.6 Electrostatic Instruments 478
27.3 Digital Voltmeters and Digital Multimeters 478
27.3.1 Analog-to-Digital Conversion Techniques 479
27.3.2 Elements in DVMs and DMMs 483
27.3.3 DVM and DMM Specifications 487
27.4 Power Measurement 488
27.4.1 The Three-Voltmeter Method of Power Measurement 488
27.4.2 Direct-Indicating Analog Wattmeters 488
27.4.3 Connection of Wattmeters 490
27.4.4 Three-Phase Power Measurement 491
27.4.5 Electronic Wattmeters 492
27.4.6 High-Frequency Power Measurement 493
27.5 Measurement of Electrical Energy 495
27.6 Power-Factor Measurement 496
27.7 The Measurement of Resistance, Capacitance, and Inductance 497
27.7.1 DC Bridge Measurements 497
27.7.2 AC Equivalent Circuits of Resistors, Capacitors, and Inductors 500
27.7.3 Four-Arm AC Bridge Measurements 501
27.7.4 Transformer Ratio Bridges 505
27.7.5 High-Frequency Impedance Measurement 510
27.8 Digital Frequency and Period/Time-Interval Measurement 512
27.8.1 Frequency Counters and Universal Timer/Counters 512
27.8.2 Time-Interval Averaging 515
27.8.3 Microwave-Frequency Measurement 518
27.9 Frequency and Phase Measurement Using an Oscilloscope 520
References 520
Further Reading 521
Chapter 28. Optical Measurements 522
28.1 Introduction 522
28.2 Light Sources 522
28.2.1 Incandescent Lamps 523
28.2.2 Discharge Lamps 523
28.2.3 Electronic Sources: Light-emitting Diodes 524
28.2.4 Lasers 524
28.3 Detectors 525
28.3.1 Photomultipliers 525
28.3.2 Photovoltaic and Photoconductive Detectors (Photodiodes) 526
28.3.3 Pyroelectric Detectors 527
28.3.4 Array Detectors 528
28.4 Detector Techniques 529
28.4.1 Detector Circuit Time Constants 529
28.4.2 Detector Cooling 529
28.4.3 Beam Chopping and Phase-Sensitive Detection 530
28.4.4 The Boxcar Detector 530
28.4.5 Photon Counting 531
28.5 Intensity Measurement 531
28.5.1 Photometers 532
28.5.2 Ultraviolet Intensity Measurements 532
28.5.3 Color-Temperature Meters 533
28.6 Wavelength and Color 533
28.6.1 Spectrophotometers 533
28.6.2 Spectroradiometers 535
28.6.3 The Measurement of Color 535
28.7 Measurement of Optical Properties 537
28.7.1 Refractometers 537
28.7.2 Polarimeters 539
28.8 Thermal Imaging Techniques 541
References 542
Chapter 29. Nuclear Instrumentation Technology 544
29.1 Introduction 544
29.1.1 Statistics of Counting 544
29.1.2 Classification of Detectors 547
29.1.3 Health and Safety 548
29.2 Detectors 549
29.2.1 Gas Detectors 549
29.2.2 Scintillation Detectors 551
29.2.3 Solid-state Detectors 555
29.2.4 Detector Applications 556
29.3 Electronics 564
29.3.1 Electronics Assemblies 564
29.3.2 Power Supplies 565
29.3.3 Amplifiers 566
29.3.4 Sealers 566
29.3.5 Pulse-Height Analyzers 566
29.3.6 Special Electronic Units 567
References 570
Further Reading 570
Chapter 30. Measurements Employing Nuclear Techniques 572
30.1 Introduction 572
30.1.1 Radioactive Measurement Relations 573
30.1.2 Optimum Time of Measurement 574
30.1.3 Accuracy/Precision of Measurements 574
30.1.4 Measurements on Fluids in Containers 574
30.2 Materials Analysis 575
30.2.1 Activation Analysis 575
30.2.2 X-ray Fluorescence Analysis 576
30.2.3 Moisture Measurement: By Neutrons 578
30.2.4 Measurement of Sulfur Contents of Liquid Hydrocarbons 580
30.2.5 The Radioisotope Calcium Monitor 581
30.2.6 Wear and Abrasion 582
30.2.7 Leak Detection 582
30.3 Mechanical Measurements 582
30.3.1 Level Measurement 582
30.3.2 Measurement of Flow 583
30.3.3 Mass and Thickness 584
30.4 Miscellaneous Measurements 586
30.4.1 Field-survey Instruments 586
30.4.2 Dating of Archaeological or Geological Specimens 586
30.4.3 Static Elimination 588
References 588
Chapter 31. Non-Destructive Testing 590
31.1 Introduction 590
31.2 Visual Examination 591
31.3 Surface-Inspection Methods 591
31.3.1 Visual Techniques 591
31.3.2 Magnetic Flux Methods 592
31.3.3 Potential Drop Techniques 593
31.3.4 Eddy-Current Testing 593
31.4 Ultrasonics 594
31.4.1 General Principles of Ultrasonics 594
31.4.2 The Ultrasonic Test Equipment Controls and Visual Presentation 597
31.4.3 Probe Construction 599
31.4.4 Ultrasonic Spectroscopy Techniques 600
31.4.5 Applications of Ultrasonic Spectroscopy 601
31.4.6 Other Ways of Presenting Information from Ultrasonics 602
31.4.7 Automated Ultrasonic Testing 603
31.4.8 Acoustic Emission 603
31.5 Radiography 603
31.5.1 Gamma Rays 604
31.5.2 X-rays 605
31.5.3 Sensitivity and IQI 605
31.5.4 Xerography 608
31.5.5 Fluoroscopic and Image-Intensification Methods 608
31.6 Underwater Non-Destructive Testing 609
31.6.1 Diver Operations and Communication 610
31.6.2 Visual Examination 610
31.6.3 Photography 610
31.6.4 Magnetic Particle Inspection (MPI) 611
31.6.5 Ultrasonics 611
31.6.6 Corrosion Protection 611
31.6.7 Other Non-Destructive Testing Techniques 612
31.7 Developments 613
31.8 Certification of Personnel 613
References 614
Further Reading 615
Chapter 32. Noise Measurement 616
32.1 Sound and Sound Fields 616
32.1.1 The Nature of Sound 616
32.1.2 Quantities Characterizing a Sound Source or Sound Field 617
32.1.3 Velocity of Propagation of Sound Waves 617
32.1.4 Selecting the Quantities of Interest 618
32.2 Instrumentation for the Measurement of Sound-Pressure Level 619
32.2.1 Microphones 619
Appendix 32.1 620
32.2.2 Frequency Weighting Networks and Filters 623
32.2.3 Sound-Level Meters 624
32.2.4 Noise-Exposure Meters/Noise-Dose Meters 626
32.2.5 Acoustic Calibrators 626
32.3 Frequency Analyzers 627
32.3.1 Octave Band Analyzers 627
32.3.2 Third-Octave Analyzers 628
32.3.3 Narrow-Band Analyzers 629
32.3.4 Fast Fourier Transform Analyzers 630
32.4 Recorders 630
32.4.1 Level Recorders 630
32.4.2 XY Plotters 630
32.4.3 Digital Transient Recorders 630
32.4.4 Tape Recorders 631
32.5 Sound-Intensity Analyzers 631
32.6 Calibration of Measuring Instruments 632
32.6.1 Formal Calibration 632
32.6.2 Field Calibration 632
32.6.3 System Calibration 632
32.6.4 Field-System Calibration 632
32.7 The Measurement of Sound-Pressure Level and Sound Level 632
32.7.1 Time Averaging 633
32.7.2 Long Time Averaging 634
32.7.3 Statistical Distribution and Percentiles 634
32.7.4 Space Averaging 634
32.7.5 Determination of Sound Power 634
32.7.6 Measurement of Sound Power by Means of Sound Intensity 635
32.8 Effect of Environmental Conditions on Measurements 636
32.8.1 Temperature 636
32.8.2 Humidity and Rain 636
32.8.3 Wind 636
32.8.4 Other Noises 636
References 637
Further Reading 637
Part V. Controllers, Actuators, and Final Control Elements 638
Chapter 33. Field Controllers, Hardware and Software 640
33.1 Introduction 640
33.2 Field Controllers, Hardware, and Software 640
Chapter 34. Advanced Control for the Plant Floor 642
34.1 Introduction 642
34.2 Early Developments 642
34.3 The Need for Process Control 642
34.4 Unmeasured Disturbances 643
34.5 Automatic Control Valves 643
34.6 Types of Feedback Control 644
34.7 Measured Disturbances 644
34.8 The Need for Models 646
34.9 The Emergence of MPC 646
34.10 MPC vs. ARC 646
34.11 Hierarchy 647
34.12 Other Problems with MPC 648
34.13 Where We Are Today? 649
34.14 Recommendations for Using MPC 649
34.15 What’s in Store for the Next 40 Years? 650
Chapter 35. Batch Process Control 652
35.1 Introduction 652
Further Reading 653
Chapter 36. Applying Control Valves 654
36.1 Introduction 654
36.2 Valve Types and Characteristics 654
36.3 Distortion of Valve Characteristics 656
36.4 Rangeability 657
36.5 Loop Tuning 657
36.6 Positioning Positioners 658
36.7 Smarter Smart Valves 658
36.8 Valves Serve as Flowmeters 658
Further Reading 659
Part.VI. Automation and Control Systems 660
Chapter 37. Design and Construction of Instruments 662
37.1 Introduction 662
37.2 Instrument Design 662
37.2.1 The Designer’s Viewpoint 662
37.2.2 Marketing 663
37.2.3 Special Instruments 663
37.3 Elements of Construction 663
37.3.1 Electronic Components and Printed Circuits 663
37.3.2 Surface-Mounted Assemblies 665
37.3.3 Interconnections 665
37.3.4 Materials 666
37.3.5 Mechanical Manufacturing Processes 667
37.3.6 Functional Components 669
37.4 Construction of Electronic Instruments 670
37.4.1 Site Mounting 670
37.4.2 Panel Mounting 670
37.4.3 Bench-Mounting Instruments 670
37.4.4 Rack-Mounting Instruments 672
37.4.5 Portable Instruments 672
37.4.6 Encapsulation 673
37.5 Mechanical Instruments 673
37.5.1 Kinematic Design 673
37.5.2 Proximity Transducer 674
37.5.3 Load Cell 674
37.5.4 Combined Actuator Transducer 675
References 676
Chapter 38. Instrument Installation and Commissioning 678
38.1 Introduction 678
38.2 General Requirements 678
38.3 Storage and Protection 678
38.4 Mounting and Accessibility 678
38.5 Piping Systems 679
38.5.1 Air Supplies 679
38.5.2 Pneumatic Signals 679
38.5.3 Impulse Lines 679
38.6 Cabling 680
38.6.1 General Requirements 680
38.6.2 Cable Types 681
38.6.3 Cable Segregation 681
38.7 Grounding 681
38.7.1 General Requirements 681
38.8 Testing and Pre-Commissioning 681
38.8.1 General 681
38.8.2 Pre-Installation Testing 681
38.8.3 Piping and Cable Testing 682
38.8.4 Loop Testing 682
38.9 Plant Commissioning 683
References 683
Chapter 39. Sampling 684
39.1 Introduction 684
39.1.1 Importance of Sampling 684
39.1.2 Representative Sample 684
39.1.3 Parts of Analysis Equipment 685
39.1.4 Time Lags 685
39.1.5 Construction Materials 686
39.2 Sample System Components 687
39.2.1 Probes 687
39.2.2 Filters 688
39.2.3 Coalescers 689
39.2.4 Coolers 689
39.2.5 Pumps, Gas 689
39.2.6 Pumps, Liquid 691
39.2.7 Flow Measurement and Indication 692
39.2.8 Pressure Reduction and Vaporization 693
39.2.9 Sample Lines, Tube and Pipe Fitting 693
39.3 Typical Sample Systems 695
39.3.1 Gases 695
39.3.2 Liquids 697
References 699
Chapter 40. Telemetry 700
40.1 Introduction 700
40.2 Communication Channels 702
40.2.1 Transmission Lines 702
40.2.2 Radio Frequency Transmission 704
40.2.3 Fiber-Optic Communication 704
40.3 Signal Multiplexing 707
40.4 Pulse Encoding 708
40.5 Carrier Wave Modulation 710
40.6 Error Detection and Correction Codes 711
40.7 Direct Analog Signal Transmission 712
40.8 Frequency Transmission 713
40.9 Digital Signal Transmission 713
40.9.1 Modems 715
40.9.2 Data Transmission and Interfacing Standards 716
References 720
Further Reading 720
Chapter 41. Display and Recording 722
41.1 Introduction 722
41.2 Indicating Devices 722
41.3 Light-Emitting Diodes (LEDs) 723
41.4 Liquid Crystal Displays (LCDs) 725
41.5 Plasma Displays 726
41.6 Cathode Ray Tubes (CRTs) 727
41.6.1 Color Displays 728
41.6.2 Oscilloscopes 729
41.6.3 Storage Oscilloscopes 730
41.6.4 Sampling Oscilloscopes 731
41.6.5 Digitizing Oscilloscopes 731
41.6.6 Visual Display Units (VDUs) 732
41.6.7 Graphical Displays 732
41.7 Graphical Recorders 732
41.7.1 Strip Chart Recorders 733
41.7.2 Circular Chart Recorders 734
41.7.3 Galvanometer Recorders 734
41.7.4 X–Y Recorders 735
41.8 Magnetic Recording 735
41.9 Transient/Waveform Recorders 736
41.10 Data Loggers 736
References 737
Chapter 42. Pneumatic Instrumentation 738
42.1 Basic Characteristics 738
42.2 Pneumatic Measurement and Control Systems 739
42.3 Principal Measurements 740
42.3.1 Introduction 740
42.3.2 Temperature 740
42.3.3 Pressure Measurement 741
42.3.4 Level Measurements 744
42.3.5 Buoyancy Measurements 744
42.3.6 Target Flow Transmitter 744
42.3.7 Speed 745
42.4 Pneumatic Transmission 745
42.5 Pneumatic Controllers 746
42.5.1 Motion-Balance Controllers 746
42.5.2 Force-Balance Controllers 748
42.6 Signal Conditioning 752
42.6.1 Integrators 752
42.6.2 Analog Square Root Extractor 752
42.6.3 Pneumatic Summing Unit and Dynamic Compensator 752
42.6.4 Pneumatic-to-Current Converters 753
42.7 Electropneumatic Interface 755
42.7.1 Diaphragm Motor Actuators 755
42.7.2 Pneumatic Valve Positioner 756
42.7.3 Electropneumatic Converters 757
42.7.4 Electropneumatic Positioners 758
References 758
Chapter 43. Reliability in Instrumentation and Control 760
43.1 Reliability Principles and Terminology 760
43.1.1 Definition of Reliability 760
43.1.2 Reliability and MTBF 760
43.1.3 The Exponential Failure Law 761
43.1.4 Availability 762
43.1.5 Choosing Optimum Reliability 762
43.1.6 Compound Systems 763
43.2 Reliability Assessment 765
43.2.1 Component Failure Rates 765
43.2.2 Variation of Failure Rate with Time 765
43.2.3 Failure Modes 766
43.2.4 The Effect of Temperature on Failure Rates 766
43.2.5 Estimating Component Temperature 767
43.2.6 The Effect of Operating Voltage on Failure Rates 768
43.2.7 Accelerated Life Tests 768
43.2.8 Component Screening 769
43.2.9 Confidence Limits and Confidence Level 769
43.2.10 Assembly Screening 769
43.2.11 Dealing with the Wear-out Phase 770
43.2.12 Estimating System Failure Rate 770
43.2.13 Parallel Systems 771
43.2.14 Environmental Testing 771
43.3 System Design 772
43.3.1 Signal Coding 772
43.3.2 Digitally Coded Systems 773
43.3.3 Performance Margins in System Design 773
43.3.4 Coping with Tolerance 774
43.3.5 Component Tolerances 774
43.3.6 Temperature Effects 775
43.3.7 Design Automation 776
43.3.8 Built-in Test Equipment 777
43.3.9 Sneak Circuits 777
43.4 Building High-Reliability Systems 778
43.4.1 Reliability Budgets 778
43.4.2 Component Selection 778
43.4.3 The Use of Redundancy 779
43.4.4 Redundancy with Majority Voting 780
43.4.5 The Level of Redundancy 781
43.4.6 Analog Redundancy 781
43.4.7 Common Mode Faults 782
43.5 The Human Operator in Control and Instrumentation 783
43.5.1 The Scope for Automation 783
43.5.2 Features of the Human Operator 783
43.5.3 User-Friendly Design 785
43.5.4 Visual Displays 787
43.5.5 Safety Procedures 787
43.6 Safety Monitoring 788
43.6.1 Types of Failure 788
43.6.2 Designing Fail-Safe Systems 788
43.6.3 Relay Tripping Circuits 789
43.6.4 Mechanical Fail-Safe Devices 789
43.6.5 Control System Faults 790
43.6.6 Circuit Fault Analysis 790
43.7 Software Reliability 791
43.7.1 Comparison with Hardware Reliability 791
43.7.2 The Distinction between Faults and Failures 792
43.7.3 Typical Failure Intensities 792
43.7.4 High-Reliability Software 792
43.7.5 Estimating the Number of Faults 792
43.7.6 Structured Programming 793
43.7.7 Failure-Tolerant Systems 794
43.8 Electronic and Avionic Systems 794
43.8.1 Radio Transmitters 794
43.8.2 Satellite Links 795
43.8.3 Aircraft Control Systems 795
43.8.4 Railway Signaling and Control 797
43.8.5 Robotic Systems 798
43.9 Nuclear Reactor Control Systems 799
43.9.1 Requirements for Reactor Control 799
43.9.2 Principles of Reactor Control 799
43.9.3 Types of Failure 802
43.9.4 Common Mode Faults 802
43.9.5 Reactor Protection Logic 804
43.10 Process and Plant Control 805
43.10.1 Additional Hazards in Chemical Plants 805
43.10.2 Hazardous Areas 805
43.10.3 Risks to Life 806
43.10.4 The Oil Industry 806
43.10.5 Reliability of Oil Supply 807
43.10.6 Electrostatic Hazards 808
43.10.7 The Use of Redundancy 809
References 809
British Standards 810
British Standard Codes of Practice 810
European and Harmonized Standards 810
Chapter 44. Safety 812
44.1 Introduction 812
44.2 Electrocution Risk 813
44.2.1 Earthing (Grounding) and Bonding 814
44.3 Flammable Atmospheres 814
44.4 Other Safety Aspects 818
44.5 Conclusion 819
References 819
Further Reading 819
Chapter 45. EMC 820
45.1 Introduction 820
45.1.1 Compatibility between Systems 820
45.1.2 The Scope of EMC 821
45.2 Interference Coupling Mechanisms 824
45.2.1 Source and Victim 824
45.2.2 Emissions 828
45.2.3 Susceptibility 831
45.3 Circuits, Layout, and Grounding 837
45.3.1 Layout and Grounding 838
45.3.2 Digital and Analog Circuit Design 847
45.4 Interfaces, Filtering, and Shielding 864
45.4.1 Cables and Connectors 864
45.4.2 Filtering 871
45.4.3 Shielding 881
45.5 The Regulatory Framework 888
45.5.1 Customer Requirements 888
45.5.2 The EMC Directive 888
45.5.3 Standards Relating to the EMC Directive 892
References 893
Further Reading 894
Appendix A. General Instrumentation Books 896
Appendix B. Professional Societies and Associations 902
Appendix C. The Institute of Measurement and Control 906
Role and Objectives 906
History 906
Qualifications 907
Chartered Status for Individuals 907
Incorporated Engineers and Engineering Technicians 907
Membership 907
Corporate Members 907
Honorary Fellow 907
Fellows 907
Members 907
Noncorporate Members 908
Companions 908
Graduates 908
Licentiates 908
Associates 908
Students 908
Affiliates 908
Subscribers 908
Application for Membership 908
National and International Technical Events 908
Local Sections 908
Publications 908
Advice and Information 909
Awards and Prizes 909
Government and Administration 909
Appendix D. International Society of Automation, Formerly Instrument Society of America 910
Training 910
Standards and Practices 910
Publications 911
Index 912

Erscheint lt. Verlag 25.11.2009
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
ISBN-10 0-08-094188-5 / 0080941885
ISBN-13 978-0-08-094188-2 / 9780080941882
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 26,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Null-Fehler-Management in der Praxis

von Kurt Matyas; Berndt Jung; Stefan Schweißer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 48,80
Manufacturing Excellence in der Smart Factory

von Jürgen Kletti; Jürgen Rieger

eBook Download (2023)
Springer Vieweg (Verlag)
CHF 68,35