Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Power Generation from Solid Fuels (eBook)

eBook Download: PDF
2010 | 2010
XXXVIII, 674 Seiten
Springer Berlin (Verlag)
978-3-642-02856-4 (ISBN)

Lese- und Medienproben

Power Generation from Solid Fuels - Hartmut Spliethoff
Systemvoraussetzungen
213,99 inkl. MwSt
(CHF 208,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Power Generation from Solid Fuels introduces the different technologies to produce heat and power from solid fossil (hard coal, brown coal) and renewable (biomass, waste) fuels, such as combustion and gasification, steam power plants and combined cycles etc. The book discusses technologies with regard to their efficiency, emissions, operational behavior, residues and costs. Besides proven state of the art processes, the focus is on the potential of new technologies currently under development or demonstration.

The main motivation of the book is to explain the technical possibilities for reducing CO2 emissions from solid fuels. The strategies which are treated are: more efficient power and heat generation technologies, processes for the utilisation of renewable solid fuels, such as biomass and waste, and technologies for carbon capture and storage.

Power Generation from Solid Fuels provides, both to academia and industry, a concise treatment of industrial combustion of all types of solid, hopefully inspiring the next generation of engineers and scientists.

Preface 6
Contents 10
List of Figures 16
List of Tables 32
List of Symbols 36
1 Motivation 39
1.1 Primary Energy Consumption and CO2 Emissions 39
1.1.1 Development of Primary Energy Consumption in the Past 40 Years 39
1.1.2 Developments Until 2030 39
1.2 Greenhouse Effect and Impacts on the Climate 43
1.2.1 Greenhouse Effect 44
1.2.2 Impacts 46
1.2.3 Scenarios of the World Climate 46
1.3 Strategies of CO2 Reduction 48
1.3.1 Substitution 48
1.3.2 Carbon Capture and Storage (CCS) 49
1.3.3 Energy Saving 50
1.3.4 Mitigation Scenarios 50
References 51
2 Solid Fuels 52
2.1 Fossil Fuels 52
2.1.1 Origin and Classification of Coal Types 52
2.1.2 Composition and Properties of Solid Fuels 53
2.1.2.1 Petrographic Analysis 60
2.1.3 Reserves of Solid Fuels 62
2.2 Renewable Solid Fuels 66
2.2.1 Potential and Current Utilisation 66
2.2.1.1 Biomass from Farming and Forestry 67
2.2.1.2 Wastes 72
2.2.1.3 Refuse-Derived Fuels 74
2.2.1.4 Sewage Sludge 75
2.2.2 Considerations of the CO2 Neutrality of Regenerative Fuels 77
2.2.2.1 Comparison of Miscanthus and Hard Coal on a Greenhouse Gas Emissions Basis 77
2.2.2.2 Harvest Ratios 79
2.2.3 Fuel Characteristics of Biomass 79
2.2.3.1 Biomass from Farming and Forestry 79
2.2.3.2 Waste 86
2.2.3.3 Refuse-Derived Fuel (RDF) 87
2.2.3.4 Sewage Sludge 88
References 91
3 Thermodynamics Fundamentals 94
3.1 Cycles 94
3.1.1 Carnot Cycle 94
3.1.2 Joule--Thomson Process 95
3.1.3 Clausius--Rankine Cycle 98
3.2 Steam Power Cycle: Energy and Exergy Considerations 101
3.2.1 Steam Generator Energy and Exergy Efficiencies 104
3.2.2 Energy and Exergy Cycle Efficiencies 106
3.2.3 Energy and Exergy Efficiency of the Total Cycle 107
References 108
4 Steam Power Stations for Electricity and Heat Generation 109
4.1 Pulverised Hard Coal Fired Steam Power Plants 109
4.1.1 Energy Conversion and System Components 109
4.1.2 Design of a Condensation Power Plant 111
4.1.3 Development History of Power Plants -- Correlation Between Unit Size, Availability and Efficiency 113
4.1.4 Reference Power Plant 117
4.2 Steam Generators 117
4.2.1 Flow and Heat Transfer Inside a Tube 119
4.2.2 Evaporator Configurations 123
4.2.2.1 Natural Circulation 123
4.2.2.2 Forced Circulation 125
4.2.2.3 Once-Through Systems 126
4.2.3 Steam Generator Construction Types 129
4.2.3.1 Single-Pass Boilers and Two-Pass Boilers 129
4.2.4 Operating Regimes and Control Modes 131
4.2.4.1 Operating Regimes 131
4.2.4.2 Primary, Secondary and Tertiary Control 132
4.2.4.3 Constant-Pressure and Sliding-Pressure Operation 133
4.2.4.4 Impacts on the Turbine by Sliding-Pressure or Constant-Pressure Operation 135
4.2.4.5 Impacts on Circulation or Once-Through Steam Generators by Sliding-Pressure or Constant-Pressure Operation 136
4.2.4.6 Start-Up 138
4.3 Design of a Condensation Power Plant 140
4.3.1 Requirements and Boundary Conditions 140
4.3.1.1 Fuel 141
4.3.1.2 Operating Regime 141
4.3.1.3 General Conditions and Official Directives 141
4.3.1.4 Efficiency 142
4.3.1.5 Availability 143
4.3.1.6 Costs 143
4.3.1.7 Serviceability 145
4.3.1.8 Design Life 146
4.3.2 Thermodynamic Design of the Power Plant Cycle 146
4.3.3 Heat Balance of the Boiler and Boiler Efficiency 150
4.3.4 Design of the Furnace 151
4.3.4.1 Volumetric Heat Release Rate 153
4.3.4.2 Cross-Sectional Area Heat Release Rate 153
4.3.4.3 Surface Heat Release Rate 154
4.3.4.4 Burner-Belt Heat Release Rate 154
4.3.4.5 Calculation of the Flue Gas Cooling 154
4.3.5 Design of the Steam Generator and of the HeatingSurfaces 157
4.3.5.1 Impact of the Live Steam Pressure 160
4.3.5.2 Design of the Evaporator 162
4.3.5.3 Evaporators with Vertical Internally Rifled Tubes 165
4.3.5.4 Evaporator Stability 168
4.3.5.5 Design of the Convective Heating Surfaces 169
4.3.5.6 Air Preheater 175
4.3.6 Design of the Flue Gas Cleaning Units and theAuxiliaries 177
4.3.6.1 Design of the Flue Gas Cleaning Units 177
4.3.6.2 Design of the Auxiliaries 177
4.4 Possibilities for Efficiency Increases in the Development of a Steam Power Plant 177
4.4.1 Increases in Thermal Efficiencies 178
4.4.1.1 Increasing the Live Steam and Reheater Steam Conditions, Single or Double Reheating and Reheater Spraying 178
4.4.1.2 Influence of Feed Water Preheating 183
4.4.1.3 Lower Heat Dissipation Temperatures -- Optimisation of the ``Cold End'' 187
4.4.2 Reduction of Losses 197
4.4.2.1 Internal Turbine Efficiency and Losses 197
4.4.2.2 Steam Generator Losses 198
4.4.2.3 Loss Through Reheating 203
4.4.2.4 Advanced Flue Gas Heat Utilisation 205
4.4.2.5 Other Types of Losses 207
4.4.3 Reduction of the Auxiliary Power Requirements 208
4.4.4 Losses in Part-Load Operation 211
4.4.4.1 Impact of the Operating Regime of the Steam Generator and Turbine 211
4.4.4.2 Example for the Reference Power Plant 212
4.4.5 Losses During Start-Up and Shutdown 214
4.4.6 Efficiency of Power Plants During Operation 215
4.4.7 Fuel Drying for Brown Coal 215
4.4.7.1 Warm-Gas Drying 217
4.4.7.2 Drying by Extraction Steam 217
4.4.7.3 Exploitation of the Condensation Heat of the Water Vapours 218
4.5 Effects on Steam Generator Construction 220
4.5.1 Membrane Wall 222
4.5.2 Heating Surfaces of the Final Superheater 230
4.5.3 High-Pressure Outlet Header 237
4.5.3.1 Impacts on the Turbine 238
4.5.4 Furnaces Fuelled by Dried Brown Coal 240
4.6 Developments -- State of the Art and Future 242
4.6.1 Hard Coal 242
4.6.2 Brown Coal 250
References 250
5 Combustion Systems for Solid Fossil Fuels 256
5.1 Combustion Fundamentals 258
5.1.1 Drying 259
5.1.2 Pyrolysis 260
5.1.3 Ignition 262
5.1.4 Combustion of Volatile Matter 265
5.1.5 Combustion of the Residual Char 265
5.2 Pollutant Formation Fundamentals 269
5.2.1 Nitrogen Oxides 269
5.2.1.1 Thermal NO Formation 270
5.2.1.2 Prompt NO Formation 271
5.2.1.3 NO Formation from Fuel Nitrogen 271
5.2.1.4 NO-Reducing Mechanisms 273
5.2.2 Sulphur Oxides 276
5.2.3 Ash formation 277
5.2.4 Products of Incomplete Combustion 280
5.3 Pulverised Fuel Firing 281
5.3.1 Pulverised Fuel Firing Systems 281
5.3.2 Fuel Preparation 284
5.3.2.1 Drying 284
5.3.2.2 Milling 285
5.3.2.3 Classifiers 287
5.3.3 Burners 287
5.3.4 Dry-Bottom Firing 289
5.3.5 Slag-Tap Firing 292
5.3.5.1 Large-Volume Slag-Tap Boilers 292
5.3.5.2 Cyclone Furnaces 296
5.4 Fluidised Bed Firing Systems 298
5.4.1 Bubbling Fluidised Bed Furnaces 299
5.4.2 Circulating Fluidised Bed Furnaces 301
5.4.2.1 Systems with External Fluidised Bed Heat Exchangers 302
5.4.2.2 Systems with Plate Heat Exchangers 303
5.4.2.3 Solid Separation Systems 303
5.4.2.4 Future Developments 305
5.5 Stoker/Grate Firing Systems 306
5.5.1 Travelling Grate Stoker Firing 306
5.5.2 Self-Raking Type Moving-Grate Stokers 308
5.5.3 Vibrating-Grate Stokers 310
5.6 Legislation and Emission Limits 310
5.7 Methods for NOx Reduction 312
5.7.1 Combustion Engineering Measures 314
5.7.1.1 Investigations at Experimental Plants 316
5.7.1.2 NOx Abatement in Pulverised Coal Combustion -- State of the Art 325
5.7.1.3 NOx and N2O Reduction in Fluidised Bed Combustion -- State of the Art 335
5.7.1.4 NOx Reduction in Grate Firing Systems -- State of the Art 336
5.7.2 NOx Reduction Methods, SNCR and SCR (Secondary Measures) 337
5.7.2.1 Selective Non-catalytic Reduction (SNCR) 337
5.7.2.2 Selective Catalytic Reduction (SCR) 338
5.7.3 Dissemination and Costs 341
5.8 SO2-Reduction Methods 342
5.8.1 Methods to Reduce the Sulphur Content of the Fuel 343
5.8.2 Methods of Fuel Gas Desulphurisation 343
5.8.2.1 Additive Injection in the Furnace 343
5.8.2.2 Downstream Desulphurisation (Semi-dry, Wet) 347
5.8.3 Dissemination and Costs 350
5.9 Particulate Control Methods 350
5.9.1 Mechanical Separators (Inertia Separators) 351
5.9.2 Electrostatic Precipitators 352
5.9.3 Fabric Filters 354
5.9.4 Applications and Costs 356
5.10 Effect of Slag, Ash and Flue Gas on Furnace Walls and Convective Heat Transfer Surfaces (Operational Problems) 357
5.10.1 Slagging 359
5.10.1.1 The Process of Slagging 359
5.10.1.2 Evaluation of the Slagging Behaviour 361
5.10.1.3 Impacts, Countermeasures and Remedial Actions 368
5.10.2 Fouling 369
5.10.3 Erosion 370
5.10.4 High-Temperature Corrosion 371
5.10.4.1 Furnace Corrosion Through Hydrogen Chloride 371
5.10.4.2 Corrosion of the Convective Heat Transfer Surfaces by Molten Salts 372
5.10.4.3 Corrosion of the Convective Heat Transfer Surfaces by Chlorine-Induced High-Temperature Corrosion 374
5.11 Residual Matter 375
5.11.1 Forming and Quantities 375
5.11.1.1 Ashes from Pulverised Hard Coal Combustion 376
5.11.1.2 Ashes from Pulverised Brown Coal Combustion 377
5.11.1.3 Ashes from Fluidised Bed Combustion 377
5.11.1.4 Residual Matter from Flue Gas Desulphurisation 378
5.11.2 Commercial Exploitation 379
5.11.2.1 Ash from Combustion of Pulverised Hard Coal 379
5.11.2.2 Ash from Combustion of Pulverised Brown Coal 381
5.11.2.3 Ash from Fluidised Bed Combustion 381
5.11.2.4 Residual Matter from Flue Gas Desulphurisation 382
5.11.2.5 Heavy Metals and Leaching Behaviour of Residual Matter 382
5.11.2.6 State of the Art of Reuse of Residual Materials 384
References 386
6 Power Generation from Biomass and Waste 395
6.1 Power Production Pathways 395
6.1.1 Techniques Involving Combustion 395
6.1.2 Techniques Involving Gasification 397
6.2 Biomass Combustion Systems 398
6.2.1 Capacities and Types 398
6.2.2 Impact of Load and Forms of Delivery of the Fuel Types 399
6.2.3 Furnace Types 400
6.2.3.1 Shaft Furnaces 400
6.2.3.2 Underfeed Firing 401
6.2.3.3 Stokers 402
6.2.3.4 ``Cigar Burner'' for Herbaceous Biomass Bales 403
6.2.3.5 Fluidised Bed Combustion (FBC) 404
6.2.3.6 Pulverised Fuel Combustion (PFC) 406
6.2.4 Flue Gas Cleaning and Ash Disposal 407
6.2.4.1 Particulate Control 408
6.2.4.2 Nitrogen Oxides and Sulphur Oxide 409
6.2.4.3 Chlorine 410
6.2.4.4 Ash Utilisation 410
6.2.5 Operational Problems 411
6.3 Biomass Gasification 413
6.3.1 Reactor Design Types 414
6.3.1.1 Fixed Bed Gasifiers 416
6.3.2 Gas Utilisation and Quality Requirements 423
6.3.2.1 Gas Utilisation in Boilers and Cement Kilns 423
6.3.3 Gas Cleaning 425
6.3.3.1 Tar Formation in Gasification 425
6.3.3.2 Secondary Tar Reduction 429
6.3.3.3 Particle Cleaning 432
6.3.4 Power Production Processes 432
6.4 Thermal Utilisation of Waste (Energy from Waste) 435
6.4.1 Historical Development of Energy from WasteSystems (EfW) 439
6.4.2 Grate-Based Combustion Systems 442
6.4.2.1 Design of the Grate Firing System 444
6.4.2.2 Grate Variants 446
6.4.2.3 Furnace and Boiler 448
6.4.2.4 Ash Deposition 450
6.4.2.5 Corrosion 451
6.4.3 Pyrolysis and Gasification Systems 452
6.4.3.1 Pyrolysis in Rotary Kilns 452
6.4.3.2 Gasification with Pure Oxygen and Integrated Melting 453
6.4.3.3 Fluidised Bed Gasification 454
6.4.4 Refuse-Derived Fuel (RDF) 455
6.4.5 Sewage Sludge 457
6.4.6 Steam Boilers 458
6.4.7 Efficiency Increases in EfW Plants 459
6.4.8 Dioxins 468
6.4.9 Flue Gas Cleaning 469
6.5 Co-combustion in Coal-Fired Power Plants 472
6.5.1 Co-combustion Design Concepts 474
6.5.2 Biomass Preparation and Feeding 476
6.5.3 Co-combustion in Pulverised Fuel Firing 480
6.5.3.1 Volumetric and Mass Fuel Flowrates and Flue Gas Flowrate 480
6.5.3.2 Combustion Process 483
6.5.3.3 Slagging, Fouling, Erosion 483
6.5.3.4 Corrosion 485
6.5.3.5 Emissions 486
6.5.3.6 Effects on Residual Matter 489
6.5.3.7 NOx Control Equipment 491
6.5.3.8 Flue Gas Desulphurisation (FGD) Equipment 492
6.5.4 Co-combustion in Fluidised Bed Furnaces 492
6.5.4.1 Co-combustion of Coal and Straw in an 88MWth CFBC 493
6.5.4.2 Co-combustion of Sewage Sludge in a CFBC 495
References 495
7 Coal-Fuelled Combined Cycle Power Plants 502
7.1 Natural Gas Fuelled Combined Cycle Processes 502
7.2 Overview of Combined Processes with Coal Combustion 507
7.2.1 Introduction 507
7.2.2 Hot Gas Purity Requirements 510
7.2.3 Overview of the Hot Gas Cleaning System for Coal Combustion Combined Cycles 513
7.2.4 Effect of Pressure on Combustion 514
7.3 Pressurised Fluidised Bed Combustion (PFBC) 516
7.3.1 Overview 516
7.3.2 Hot Gas Cleaning After the Pressurised Fluidised Bed 523
7.3.2.1 Cyclone Separators 523
7.3.2.2 Electrostatic Precipitators 525
7.3.2.3 Filtration Separators 525
7.3.2.4 Comparison of Methods and Techniques 529
7.3.3 Pressurised Bubbling Fluidised Bed Combustion(PBFBC) 531
7.3.3.1 State of Development 531
7.3.3.2 Industrial-Scale Configurations 533
7.3.3.3 Control 535
7.3.3.4 Emissions 536
7.3.3.5 Residual Material 537
7.3.3.6 Operating Expertise 537
7.3.3.7 Comparison of Bubbling Pressurised Fluidised Beds to Conventional Pulverised Coal Firing 540
7.3.4 Pressurised Circulating Fluidised Bed Combustion(PCFBC) 540
7.3.4.1 Bubbling and Circulating Pressurised Fluidised Bed Combustion: Comparison in a Pilot-Scale Plant 542
7.3.5 Second-Generation Fluidised Bed Firing Systems(Hybrid Process) 547
7.3.6 Summary 550
7.4 Pressurised Pulverised Coal Combustion (PPCC) 551
7.4.1 Overview 551
7.4.2 Molten Slag Removal 553
7.4.3 Alkali Release and Capture 556
7.4.3.1 Fundamentals 556
7.4.3.2 Alkali Emissions from Combustion 564
7.4.3.3 Secondary Alkali Removal 568
7.4.4 State of Development 571
7.4.4.1 Germany, Pressurised Pulverised Coal Combustion Project 571
7.4.4.2 Efficiency Potential and Design of PPCC Furnaces 573
7.4.4.3 USA 575
7.4.4.4 Westinghouse 575
7.4.4.5 Solar Turbines 577
7.4.4.6 Allison 578
7.4.5 Summary and Conclusions 578
7.5 Externally Fired Gas Turbine Processes 579
7.5.1 Structure, Configurations, Efficiency 579
7.5.2 High-Temperature Heat Exchanger 584
7.5.2.1 Requirements 584
7.5.2.2 Selection of the Material 585
7.5.2.3 Classification of Heat Exchangers 589
7.5.3 State of Development 594
7.5.3.1 EFCC Processes with Metallic Heat Exchangers 595
7.5.3.2 EFCC Processes with Ceramic Heat Exchangers 597
7.5.4 Conclusions 601
7.6 Integrated Gasification Combined Cycle (IGCC) 602
7.6.1 History of Coal Gasification 602
7.6.2 Applications of Gasification Technology 603
7.6.2.1 Generation of Secondary Energy Sources 603
7.6.2.2 IGCC With and Without CO2 Capture 604
7.6.2.3 Factors Affecting the Efficiency of an IGCC 607
7.6.3 Gasification Systems and Chemical Reactions 609
7.6.3.1 Allothermal and Autothermal Gasification 609
7.6.3.2 Basic Chemical Reactions 611
7.6.3.3 Considerations of the Thermodynamic Equilibrium 613
7.6.4 Classification of Coal Gasifiers 618
7.6.4.1 Fixed Bed Gasifiers 618
7.6.4.2 Fluidised Bed Gasifiers 621
7.6.4.3 Entrained-Flow Gasifier 622
7.6.5 Gas Treatment 626
7.6.5.1 Impurities in the Gas 628
7.6.5.2 Raw Gas Cooling 629
7.6.5.3 Particulate Removal 631
7.6.5.4 CO Shift 631
7.6.5.5 Acid Gas Removal (H2S, COS, CO2) 632
7.6.5.6 Hot Gas Cleaning 635
7.6.5.7 CO2 Separation at High Temperatures 639
7.6.6 Components and Integration 641
7.6.6.1 Gas Turbines 641
7.6.6.2 Air Separation Unit (ASU) 643
7.6.6.3 Integration 644
7.6.7 State of the Art and Perspectives 645
7.6.7.1 IGCC Plants in Operation 645
7.6.7.2 Description of the Puertollano Plant 646
7.6.7.3 Process Availability and Costs of IGCC Plants 648
7.6.7.4 Efficiency Potential 649
7.6.7.5 IGCC Concept Designs with CO2 Removal 650
7.6.7.6 Long-Term Perspectives 651
References 652
8 Carbon Capture and Storage (CCS) 662
8.1 Potential for Carbon Capture and Storage 662
8.2 Properties and Transport of CO2 663
8.3 CO2 Storage 665
8.3.1 Industrial Use 665
8.3.2 Geological Storage 666
8.3.2.1 Existing CO2 Storage Projects 667
8.3.2.2 Capacity of Storage Sites 667
8.3.2.3 Risks and Open Questions 668
8.3.2.4 Ocean Storage 668
8.3.2.5 Mineral Carbonation 669
8.4 Overview of Capture Technologies 670
8.4.1 Technology Overview 670
8.4.2 Separation Technologies 672
8.4.2.1 Separation with Sorbents or Solvents 672
8.4.2.2 Separation with Membranes 673
8.4.2.3 Distillation of a Liquefied Gas Stream and Refrigerated Separation 674
8.4.2.4 Separation Work 674
8.5 Post-combustion Technologies 675
8.5.1 Chemical Absorption 675
8.5.1.1 Solvents (Amines) 677
8.5.1.2 Energy Requirements 677
8.5.1.3 Flue Gas Pre-treatment 678
8.5.2 Solid Sorbents 679
8.6 Oxy-fuel Combustion 680
8.6.1 Oxy-fuel Steam Generator Concepts 682
8.6.1.1 Flue Gas Recirculation 683
8.6.1.2 Water/Steam Spraying 684
8.6.1.3 Controlled Fuel/Oxygen Staging with Rich/Lean Burners 684
8.6.2 Impact of Oxy-fuel Combustion 684
8.6.2.1 Flue Gas Composition 684
8.6.2.2 Thermodynamic Properties 685
8.6.2.3 Heat Transfer 686
8.6.2.4 Emissions 688
8.6.3 Oxy-fuel Configurations 689
8.6.3.1 CO2 Purity 689
8.6.3.2 Waste Heat Recovery 691
8.6.3.3 Flue Gas Recirculation 691
8.6.4 Chemical-Looping Combustion 692
8.7 Integrated Gasification Combined Cycles with Carbon Capture and Storage 694
8.8 Comparison of CCS Technologies 696
References 698
Index 701

Erscheint lt. Verlag 18.3.2010
Reihe/Serie Power Systems
Zusatzinfo XXXVIII, 674 p. 405 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Wirtschaft
Schlagworte biomass • coal • Combustion • electricity • fuel • plants • Potential • thermodynamics
ISBN-10 3-642-02856-X / 364202856X
ISBN-13 978-3-642-02856-4 / 9783642028564
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 23,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald …

eBook Download (2022)
Carl Hanser Fachbuchverlag
CHF 52,75