Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Group Theory in Solid State Physics and Photonics

Problem Solving with Mathematica
Software / Digital Media
377 Seiten
2018
Wiley-VCH Verlag GmbH (Hersteller)
978-3-527-69579-9 (ISBN)
CHF 156,20 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
While group theory and its application to solid state physics is well established, this textbook raises two completely new aspects. First, it provides a better understanding by focusing on problem solving and making extensive use of Mathematica tools to visualize the concepts. Second, it offers a new tool for the photonics community by transferring the concepts of group theory and its application to photonic crystals.
Clearly divided into three parts, the first provides the basics of group theory. Even at this stage, the authors go beyond the widely used standard examples to show the broad field of applications. Part II is devoted to applications in condensed matter physics, i.e. the electronic structure of materials. Combining the application of the computer algebra system Mathematica with pen and paper derivations leads to a better and faster understanding. The exhaustive discussion shows that the basics of group theory can also be applied to a totally different field, as seen in Part III. Here, photonic applications are discussed in parallel to the electronic case, with the focus on photonic crystals in two and three dimensions, as well as being partially expanded to other problems in the field of photonics.
The authors have developed Mathematica package GTPack which is available for download from the book's homepage. Analytic considerations, numerical calculations and visualization are carried out using the same software. While the use of the Mathematica tools are demonstrated on elementary examples, they can equally be applied to more complicated tasks resulting from the reader's own research.

Wolfram Hergert, extraordinary professor in Computational Physics, is member of the Theoretical Physics group at University Halle-Wittenberg, Germany. Main subjects of his work are solid state theory, electronic and magnetic structure of nanostructures and photonics. Prof. Hergert has experience in teaching group theory and in applying Mathematica to physical problems. He has published in renowned journals, like Nature and Physical Review Letters, and edited a books on Computational Materials Science and Mie Theory. He is also coauthor of a book on Quantum Theory. Matthias Geilhufe studied physics at the Martin Luther University Halle-Wittenberg (Germany) with specialization in theoretical and computational physics. From 2012-2015 he was employed as a PhD student at the Max Planck Institute of Microstructure Physics in Halle. In 2015 he obtained his PhD at the Martin Luther University Halle-Wittenberg. Currently, he is working at the Nordita Institute in Stockholm, Sweden. His work is based on the investigation of electronic and magnetic properties of complex materials. For his research, methods based on group theory or density functional theory are applied.

1 Preface

2 Introduction



I Basics of group theory

3 Symmetry operations and transformations of fields

4 Basic abstract group theory

5 Discrete symmetry groups for solid state physics and photonics

6 Representation theory

7 Symmetry in k-space



II Applications in electronic structure theory

8 Solution of the Schroedinger equation

9 Generalization to include the spin

10 Electronic energy bands



III Applications in photonics

11 Solution of Maxwell's equations

12 Twodimensional photonic crystals

13 Threedimensional photonic crystals

14 Other Applications



A Mathematica Package Reference

B Connection of the group theory package to MPB and MEEP

Verlagsort Weinheim
Sprache englisch
Maße 150 x 250 mm
Gewicht 666 g
Themenwelt Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie Festkörperphysik
Technik Elektrotechnik / Energietechnik
ISBN-10 3-527-69579-6 / 3527695796
ISBN-13 978-3-527-69579-9 / 9783527695799
Zustand Neuware
Haben Sie eine Frage zum Produkt?