Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Electrical Engineering - Allan R. Hambley

Electrical Engineering

Principles and Applications: United States Edition
Buch | Hardcover
846 Seiten
2001 | 2nd edition
Pearson (Verlag)
978-0-13-061070-6 (ISBN)
CHF 176,55 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Introduces basic concepts of electrical engineering for nonmajors. The second edition introduces several new topics and a number of learning features. This book surveys electrical engineering for nonmajors in their third or fourth year of study, and is also appropriate for an introductory course for electrical and computer engineering students.
Introduces basic concepts of electrical engineering for nonmajors. It is written at a level suitable for students who have completed at least one term of college physics and mathematics.

The author's approach is to solve real problems and show connections between basic principles and advanced applications, especially those closely related to other engineering fields. The second edition introduces several timely new topics and a number of innovative learning features. This book surveys electrical engineering for nonmajors in their third or fourth year of study, and is also appropriate for an introductory course for electrical and computer engineering students. Provides engineering students with a solid foundation in the basics of circuits, digital systems, analog electronics, and electromechanics.

Allan R. Hambley received the B.S. degree from Michigan Technological University, the M.S. degree from Illinois Institute of Technology, and the Ph.D. degree from Worcester Polytechnic Institute. He has worked in industry for Hazeltine Research Inc., Warwick Electronics, and Harris Government Systems. Currently, he is a Professor of Electrical and Computer Engineering at Michigan Tech. The Michigan Tech chapter of Eta Kappa Nu has twice named him the Outstanding Electrical Engineering Teacher of the Year. He has won the National Technological University Outstanding Instructor Award six times for his courses in communication systems. The American Society for Engineering Education presented him with the 1998 Meriam/Wiley Distinguished Author Award for his book, Electronics. His hobbies include fishing, boating in remote areas of Lake Superior, and gardening.

(NOTE: Each chapter concludes with Summary and Problems.)I. CIRCUITS.

1. Introduction.


Overview of Electrical Engineering. Circuits, Currents, and Voltages. Power and Energy. Kirchhoff's Current Law. Kirchhoff's Voltage Law. Introduction to Circuit Elements. Introduction to Circuits.

2. Resistive Circuits.


Resistances in Series and Parallel. Network Analysis by Using Series and Parallel Equivalents. Voltage-Divider and Current-Divider Circuits. Node-Voltage Analysis. Mesh-Current Analysis. Thevenin and Norton Equivalent Circuits. Superposition Principle. Wheatstone Bridge.

3. Inductance and Capacitance.


Capacitance. Capacitances in Series and Parallel. Physical Characteristics of Capacitors. Inductance. Inductances in Series and Parallel. Practical Inductors. Mutual Inductance.

4. Transients.


First-Order RC Circuits. DC Steady State. RL Circuits. RC and RL Circuits with General Sources. Second-Order Circuits.

5. Steady-State Sinusoidal Analysis.


Sinusoidal Currents and Voltages. Phasors. Complex Impedances. Circuit Analysis with Phasors and Complex Impedances. Power in AC Circuits. Thevenin and Norton Equivalent Circuits. Balanced Three-Phase Circuits.

6. Frequency Response, Bode Plots, and Resonance.


Fourier Analysis, Filters, and Transfer Functions. First-Order Lowpass Filters. Decibels, the Cascade Connection, and Logarithmic Frequency Scales. Bode Plots. First-Order Highpass Filters. Series Resonance. Parallel Resonance. Ideal and Second-Order Filters. Digital Signal Processing.

II. DIGITAL SYSTEMS.

7. Logic Circuits.


Basic Logic Circuit Concepts. Representation of Numerical Data in Binary Form. Combinatorial Logic Circuits. Synthesis of Logic Circuits. Minimization of Logic Circuits. Sequential Logic Circuits.

8. Microcomputers.


Computer Organization. Memory Types. Digital Process Control. The Motorola 68HC11/12. The Instruction Set and Addressing Modes for the 68HC11. Assembly-Language Programming.

9. Computer-Based Instrumentation Systems.


Measurement Concepts and Sensors. Signal Conditioning. Analog-to-Digital Conversion. LabVIEW™.

III. ELECTRONICS.

10. Diodes.


Basic Diode Concepts. Load-Line Analysis of Diode Circuits. Zener-Diode Voltage-Regulator Circuits. Ideal-Diode Model. Piecewise-Linear Diode Models. Rectifier Circuits. Wave-Shaping Circuits. Linear Small-Signal Equivalent Circuits.

11. Amplifiers: Specifications and External Characteristics.


Basic Amplifier Concepts. Cascaded Amplifiers. Power Supplies and Efficiency. Additional Amplifier Models. Importance of Amplifier Impedances in Various Applications. Ideal Amplifiers. Frequency Response. Linear Waveform Distortion. Pulse Response. Transfer Characteristic and Nonlinear Distortion. Differential Amplifiers. Offset Voltage, Bias Current, and Offset Current.

12. Field-Effect Transistors.


NMOS and PMOS Transistors. Load-Line Analysis of a Simple NMOS Amplifier. Bias Circuits. Small-Signal Equivalent Circuits. Common-Source Amplifiers. Source Followers. CMOS Logic Gates.

13. Bipolar Junction Transistors.


Current and Voltage Relationships. Common-Emitter Characteristics. Load-Line Analysis of a Common-Emitter Amplifier. pnp Bipolar Junction Transistor. Large-Signal DC Circuit Models. Large-Signal DC Analysis of BJT Circuits. Small-Signal Equivalent Circuits. Common-Emitter Amplifiers. Emitter-Followers.

14. Operational Amplifiers.


Ideal Operational Amplifiers. Summing-Point Constraint. Inverting Amplifiers. Noninverting Amplifiers. Design of Simple Amplifiers. Op-Amp Imperfections in the Linear Range of Operation. Nonlinear Limitations. DC Imperfections. Differential and Instrumentation Amplifiers. Integrators and Differentiators. Active Filters.

IV. ELECTROMECHANICS.

15. Magnetic Circuits and Transformers.


Magnetic Fields. Magnetic Circuits. Inductance and Mutual Inductance. Magnetic Materials. Ideal Transformers. Real Transformers.

16. DC Machines.


Overview of Motors. Principles of DC Machines. Rotating DC Machines. Shunt-Connected and Separately Excited DC Motors. Series-Connected DC Motors. Speed Control of DC Motors.

17. AC Machines.


Three-Phase Induction Motors. Equivalent Circuit and Performance Calculations for Induction Motors. Synchronous Machines. Single-Phase Motors. Stepper Motors.

Appendix A: Complex Numbers.
Appendix B: Nominal Values and the Color Code for Resistors.
Appendix C: Preparing for the Fundamentals of Engineering Exam.
Appendix D: Computer-Aided Circuit Analysis.
Index.

Erscheint lt. Verlag 27.7.2001
Sprache englisch
Maße 207 x 239 mm
Gewicht 1606 g
Themenwelt Technik Elektrotechnik / Energietechnik
ISBN-10 0-13-061070-4 / 0130610704
ISBN-13 978-0-13-061070-6 / 9780130610706
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
DIN-Normen und Technische Regeln für die Elektroinstallation

von DIN; ZVEH; Burkhard Schulze

Buch | Softcover (2023)
Beuth (Verlag)
CHF 119,95