Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Strategies to the Prediction, Mitigation and Management of Product Obsolescence (eBook)

eBook Download: PDF
2012 | 1. Auflage
290 Seiten
Wiley (Verlag)
978-1-118-27544-3 (ISBN)

Lese- und Medienproben

Strategies to the Prediction, Mitigation and Management of Product Obsolescence -  Bjoern Bartels,  Ulrich Ermel,  Michael G. Pecht,  Peter Sandborn
Systemvoraussetzungen
116,99 inkl. MwSt
(CHF 114,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Supply chains for electronic products are primarily driven by consumer electronics. Every year new mobile phones, computers and gaming consoles are introduced, driving the continued applicability of Moore's law. The semiconductor manufacturing industry is highly dynamic and releases new, better and cheaper products day by day. But what happens to long-field life products like airplanes or ships, which need the same components for decades? How do electronic and also non-electronic systems that need to be manufactured and supported of decades manage to continue operation using parts that were available for a few years at most? This book attempts to answer these questions.

This is the only book on the market that covers obsolescence forecasting methodologies, including forecasting tactics for hardware and software that enable cost-effective proactive product life-cycle management. This book describes how to implement a comprehensive obsolescence management system within diverse companies. Strategies to the Prediction, Mitigation and Management of Product Obsolescence is a must-have work for all professionals in product/project management, sustainment engineering and purchasing.


Supply chains for electronic products are primarily driven by consumer electronics. Every year new mobile phones, computers and gaming consoles are introduced, driving the continued applicability of Moore's law. The semiconductor manufacturing industry is highly dynamic and releases new, better and cheaper products day by day. But what happens to long-field life products like airplanes or ships, which need the same components for decades? How do electronic and also non-electronic systems that need to be manufactured and supported of decades manage to continue operation using parts that were available for a few years at most? This book attempts to answer these questions. This is the only book on the market that covers obsolescence forecasting methodologies, including forecasting tactics for hardware and software that enable cost-effective proactive product life-cycle management. This book describes how to implement a comprehensive obsolescence management system within diverse companies. Strategies to the Prediction, Mitigation and Management of Product Obsolescence is a must-have work for all professionals in product/project management, sustainment engineering and purchasing.

Bjoern Bartels is a senior consultant and obsolescence management competence lead with a masters degree in international business and a German diploma in industrial engineering and business management. Ulrich Ermel is Head of Department Materials and Obsolescence Management at TQ Systems GmbH and Chairman of the Component Obsolescence Group in Germany. Peter Sandborn, PhD, is Professor of Mechanical Engineering in the CALCE Electronic Products and Systems Center at the University of Maryland. Michael Pecht, PhD, is Chair Professor of Mechanical Engineering and Director of the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland. He is also a visiting Professor in Electronics Engineering at City University in Hong Kong.

Strategies to the Prediction, Mitigation and Management of Product Obsolescence 5
Contents 7
Preface 15
1: Introduction to Obsolescence Problems 17
1.1: Definition of Obsolescence 17
1.2: Categorization of Obsolescence Types 19
1.3: Definition of Obsolescence Management 20
1.4: Categorization of Obsolescence Management Approaches 21
1.5: Historical Perspective on Obsolescence 22
1.6: Occurrence of Obsolescence 24
1.6.1: Technological Evolution 24
1.6.2: Technological Revolutions 24
1.6.3: Market Forces 24
1.6.4: Environmental Policies and Restrictions 24
1.6.5: Allocation 25
1.6.6: Planned Obsolescence 27
1.7: Product Sectors Affected by Obsolescence Problems 27
1.8: Parts Affected by Obsolescence Problems 29
1.8.1: Electronic Part Obsolescence 29
1.8.2: Software Obsolescence 31
1.8.3: Textile and Mechanical Part Obsolescence 32
2: Part Change and Discontinuation Management 33
2.1: The Change Process 34
2.2: Change-Control Policies of Major Part Manufacturers 34
2.3: Change-Notification Policies of Major Companies 35
2.3.1: Differences by Manufacturer 35
2.3.2: Differences by Division or Manufacturing Location 37
2.3.3: Differences by Customer Type 38
2.3.4: Differences by Geographical Location 38
2.3.5: Distributors 39
2.3.6: Contract Manufacturers 39
2.4: Change-Notification 40
2.4.1: Industry Standard Process Change-Notification 40
2.4.1.1: Electronic Industries Alliance 41
2.4.1.2: U.S. Military 43
2.5: Change-Notification Paths 43
2.5.1: Direct to Equipment Manufacturers 44
2.5.2: Via Distributors 44
2.5.3: Via Contract Manufacturers 45
2.5.4: Via Independent Services 45
2.6: Examples of Common Changes 45
2.6.1: Fabrication Changes 46
2.6.2: Die Revisions 46
2.6.3: Changes to Assembly/Test Locations 47
2.6.4: Changes to Assembly Materials 47
2.6.5: Packing, Marking, and Shipping Changes 48
3: Introduction to Electronic Part Product Life Cycles 49
3.1: Product Life Cycle Stages 50
3.1.1: Introduction Stage 52
3.1.2: Growth Stage 52
3.1.3: Maturity Stage 54
3.1.4: Decline Stage 54
3.1.5: Phase-Out Stage 54
3.1.6: Discontinuance and Obsolescence 55
3.2: Special Cases of the Product Life Cycle Curve 55
3.3: Product Life Cycle Stages as a Basis for Forecasting 56
4: Obsolescence Forecasting Methodologies 57
4.1: Obsolescence Forecasting—Parts with Evolutionary Parametric Drivers 58
4.1.1: Basic Life Cycle Curve Forecasting Method 58
4.1.1.1: Step 1: Identify Part/Technology Group 58
4.1.1.2: Step 2: Identify the Part's Primary and Secondary Attributes 60
4.1.1.3: Step 3: Obtain Sales Data Associated with the Primary Attribute 62
4.1.1.4: Step 4: Construct the Life Cycle Curve and Determine Parameters 62
4.1.1.5: Step 5: Determine the Zone of Obsolescence 63
4.1.1.6: Step 6: Modify the Zone of Obsolescence 64
4.1.1.7: Summary 66
4.1.2: Advanced Life Cycle Curve Method 67
4.1.2.1: Determining the Window of Obsolescence via Data Mining 68
4.1.2.2: Application of Data Mining Determined Windows of Obsolescence to Memory Modules 70
4.2: Obsolescence Forecasting—Parts without Evolutionary Parametric Drivers 72
4.2.1: Procurement Lifetime 72
4.2.2: Electronic Part Introduction Date and Obsolescence Date Data 73
4.2.3: Determining Mean Procurement Lifetimes 74
4.2.4: An Interpretation of Procurement Lifetime and Worst-Case Forecasts 79
4.2.5: Part Type Specific Results 82
4.2.6: Discussion and Conclusions 85
4.3: Non-Database Obsolescence Forecasting Methodology 86
4.3.1: Forecasting Process 86
4.3.2: Step 1: Identify Part/Technology Group 86
4.3.3: Step 2: Obtain Forecasting Data 87
4.3.4: Step 3: Estimated EOL Date and Risk of Obsolescence 89
4.3.5: ERP System Modification 91
4.3.6: Discussion and Conclusion 92
5: Case Study Hardware Forecasts and Trends 93
5.1: Dynamic RAMs (DRAMs) 93
5.1.1: Types of DRAMs 94
5.1.2: Market and Technology Trends 94
5.1.3: Application of the Forecasting Methodology 97
5.1.4: Discussion of DRAM Forecasts 99
5.2: Static Random Access Memories (SRAMs) 100
5.2.1: Types of SRAMs 101
5.2.2: The SRAM Market 102
5.2.3: Application of the Forecasting Methodology 104
5.2.4: Discussion of SRAM Forecasts 107
5.3: Non-Volatile Memories 110
5.3.1: Types of Non-Volatile Memories 111
5.3.1.1: EEPROM 111
5.3.1.2: Flash Memory 112
5.3.2: The Non-Volatile Memory Market 113
5.3.3: Application of the Life Cycle Forecasting Methodology 114
5.3.4: Determining the Zone of Obsolescence 117
5.3.5: Discussion of Non-Volatile Memory Forecasts 119
5.4: Microprocessors 121
5.4.1: Types of Microprocessors 123
5.4.2: The Microprocessor Market 123
5.4.3: Application of Forecasting Methodology 124
5.4.4: Determining the Zone of Obsolescence 129
5.4.5: Discussion of Microprocessor Forecasts 129
5.5: Microcontrollers and Digital Signal Processors (DSPs) 131
5.5.1: Type of Microcontrollers 131
5.5.1.1: Embedded Microcontrollers 132
5.5.1.2: External Memory Microcontrollers 132
5.5.2: The Microcontroller Market 132
5.5.3: Overview of Digital Signal Processors 134
5.5.4: Application of the Life Cycle Forecasting Methodology 134
5.5.5: Determining the Zone of Obsolescence 135
5.5.6: Discussion of Microcontroller and DSP Forecasts 136
5.6: Logic Parts 136
5.6.1: Types of Logic Parts 136
5.6.2: The Logic Part Market 142
5.6.3: Application of Forecasting Methodology 142
5.6.4: Discussion of Logic Part Forecasts 144
5.7: Analog Parts 145
5.7.1: Types of Analog Parts 146
5.7.2: The Analog Part Market 146
5.7.3: Application of Forecasting Methodology 147
5.7.4: Determining the Zone of Obsolescence 149
5.7.5: Discussion of Analog Forecasts 151
5.8: Application-Specific Integrated Circuits (ASICs) 152
5.8.1: Types of ASICs 152
5.8.1.1: Full-Custom ASICs 153
5.8.1.2: Semi-Custom ASICs 153
5.8.1.3: Programmable Logic Devices 154
5.8.2: The ASIC Market 155
5.8.3: Application of Life Cycle Forecasting Methodology 155
5.8.4: Discussion of ASIC Forecasts 156
6: Software Obsolescence 159
6.1: The Root Causes of Software Obsolescence 161
6.2: Software Obsolescence Mechanisms 162
6.2.1: Software Purchasing Obsolescence Mechanism 164
6.2.2: Software Support Obsolescence Mechanism 165
6.2.3: Software Compatibility Obsolescence Mechanism 167
6.2.4: Software Infrastructure Obsolescence Mechanism 169
6.2.5: Software Distribution Obsolescence Mechanism 170
6.3: Discussion 171
7: Reactive Obsolescence Management 173
7.1: Change and Discontinuance Notifications 174
7.2: Obsolescence Recovery (Mitigation) Tactics 176
7.2.1: Negotiating with the Manufacturer 178
7.2.2: Existing Stock 178
7.2.3: Reclamation 179
7.2.4: Alternate Parts 179
7.2.5: Part Substitution 180
7.2.6: Uprating 182
7.2.7: Aftermarket Sources 184
7.2.8: Emulation 190
7.2.9: Redesign 193
7.2.10: Reverse-Engineering 196
7.2.11: Lifetime Buys/Bridge Buys 197
7.3: Selecting the Proper Reactive Obsolescence Management Strategy 202
7.3.1: Part Discontinuance Status 202
7.3.2: Degree of Life Cycle Mismatch 202
7.3.3: Number of Products Using the Obsolete Part 202
7.3.4: Volume Requirement 203
7.3.5: Product Support 203
7.3.6: Number of Obsolete Parts in a System 203
7.3.7: Future Market 203
7.3.8: Turnaround Time Available for Resolution 204
7.3.9: Requalification Requirements 204
7.4: Reactive Obsolescence Management Checklist 204
7.5: Reactive Obsolescence Management Guideline 204
8: Proactive Obsolescence Management 209
8.1: Members of the Proactive Obsolescence Management Board 210
8.2: Schedule and Milestones 210
8.3: Initial Obsolescence Risk Analysis 211
8.3.1: BOM Management 211
8.3.2: Material Risk Index 212
8.3.3: Health Monitoring 212
8.4: Tracking Parts' Availability 213
8.5: Product Obsolescence and Aftersales 213
9: Strategic Obsolescence Management 215
9.1: Applying Project Management Principles to Obsolescence Management 216
9.2: Initiation Stage 218
9.2.1: Auditing 218
9.2.2: Raising Awareness 220
9.3: Planning and Design Stage 221
9.3.1: Design Products to Avoid Obsolescence 221
9.3.2: Process Analyses 222
9.3.2.1: Ishikawa/Fishbone Diagram 222
9.3.2.2: Fault Tree Analysis (FTA) 222
9.3.2.3: Failure Modes and Effects Analysis (FMEA) 224
9.4: Execution Stage 226
9.4.1: Forecasting the Product Life Cycle 226
9.4.2: Parts Selection Process 226
9.4.3: Demand Specification 228
9.4.4: Supplier Management 229
9.4.5: Contractual Language 230
9.4.6: Special Obsolescence Management Capabilities 232
9.4.7: Streamlining Regulatory Procedures 232
9.4.8: Management above the Piece-Part Level 233
9.4.9: Design Refresh Planning Optimization 233
9.4.9.1: Porter Model for Refresh Planning 234
9.4.9.2: The MOCA Refresh Planning Model 236
9.4.9.3: Material Risk Index (MRI) Model 238
9.4.10: Open Systems 239
9.4.11: Hardware-Software Independence 240
9.4.12: Responsibilities of Customers and End Users 240
9.5: Monitoring and Controlling Stage 241
9.5.1: Economics of Obsolescence Management Strategies 241
9.5.2: Cost Variations at the Part or Component Level 243
9.5.3: Cost Variations at the System or Module Level 243
9.5.4: Cost Variations due to Economic Policy Factors 244
9.5.5: Cost-Benefit Analysis 244
9.6: Strategic Obsolescence Management Guidelines 245
10: Obsolescence Management Standards and Organizations 249
10.1: Helpful Standards for Obsolescence Management 249
10.1.1: Defense Standardization Program Office (SD-22) 250
10.1.2: Electronic Industries Alliance (EIA) 250
10.1.3: Joint Electron Device Engineering Council (JEDEC) 251
10.1.4: International Electrotechnical Commission (IEC) 251
10.1.5: DIN Deutsches Institut für Normung e.V. 252
10.1.6: British Standards Institution (BSI) 252
10.1.7: STACK International 252
10.1.8: Electronics Industry Quality Conference (EIQC) 252
10.1.9: Airlines Electronic Engineering Committee (AEEC) 253
10.1.10: VMEbus International Trade Association (VITA) 253
10.2: Helpful Organizations for Obsolescence Management 253
10.2.1: U.S. Department of Defense (DoD) 253
10.2.2: Government Industry Data Exchange Program (GIDEP) 256
10.2.3: Defense Logistics Agency (DLA) 256
10.2.4: Defense Microelectronics Activity (DMEA) 256
10.2.5: UK Ministry of Defence (UK MoD) 257
10.2.6: Component Obsolescence Group (COG) 258
10.2.7: University of Maryland—CALCE 259
10.2.8: Federal Aviation Administration (FAA) 259
References 261
Index 283

Erscheint lt. Verlag 5.4.2012
Reihe/Serie Wiley Series in Systems Engineering and Management
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Systems Engineering & Management • Systemtechnik • Systemtechnik u. -management
ISBN-10 1-118-27544-6 / 1118275446
ISBN-13 978-1-118-27544-3 / 9781118275443
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Manufacturing Excellence in der Smart Factory

von Jürgen Kletti; Jürgen Rieger

eBook Download (2023)
Springer Vieweg (Verlag)
CHF 68,35