Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Device Applications of Silicon Nanocrystals and Nanostructures (eBook)

Nobuyoshi Koshida (Herausgeber)

eBook Download: PDF
2008 | 2009
XII, 344 Seiten
Springer US (Verlag)
978-0-387-78689-6 (ISBN)

Lese- und Medienproben

Device Applications of Silicon Nanocrystals and Nanostructures -
Systemvoraussetzungen
106,99 inkl. MwSt
(CHF 104,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.


Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.

Foreword 6
Preface 8
Acknowledgements 10
Contents 11
Si-Rich Dielectrics for Active Photonic Devices 13
1. Introduction 13
2. Nucleation and Structural Properties of Si Nanocrystals 15
3. Optical Properties of Si Nanocrystals 18
3.1. Si Nanocrystal Emission 19
3.2. Emission Sensitization Through Energy Transfer from Si-Rich Dielectrics 23
3.2.1. Er 23
3.2.2. PbS Quantum Dots [66] 26
4. Devices 27
4.1. Si-Rich Nitride Light Emitting Diodes 28
4.2. Si-Rich Nitride Light Emitting Complex Photonic Structures 30
5. Outlook 32
References 33
Nanocrystalline Si EL Devices 37
1. Introduction 37
2. El of Porous Silicon 38
2.1. Formation and Properties of Porous Si 38
2.2. Porous Si Impregnated by an Electrolyte 39
2.3. Transport and EL Mechanism in Wet and Dry Porous Si 40
2.4. Devices Including As-Formed Porous Si 40
2.5. Porosified pn Junctions 41
2.6. Partially Oxidized Porous Si 43
2.7. Porous Si Impregnated by Another Material 46
2.8. Influence of the Top Contact Configuration 48
2.9. Stabilization of Porous Si EL by Layer Capping or Surface Modification 50
2.10. Microcavities 52
2.11. EL Modulation Speed 53
2.12. Integration 54
3. El Based on Ballistic Electron Excitation 55
3.1. Electron Emission from Porous Si and Its Mechanism 55
3.2. Optimization of the Electron Emission from Porous Si 55
3.3. Ballistic Electron Surface-Emitting Display on Glass Substrate 56
3.4. Solid-State Planar Luminescent Devices 57
4. Si Nanocrystals Surrounded By Si Oxide 58
4.1. Fabrication, Photoluminescence, and Introduction to EL 58
4.2. Si-Implanted Si Oxide 60
4.3. Annealed Substoichiometric Si Oxide 63
4.4. nc-Si Single Layer Sandwiched Between Two SiO2 Layers 63
5 Other Single Layer Nanostructures 66
5.1 nc-Si Embedded in SiNx 66
5.2 Other Low-Dimensional Si Structures 66
5.3. Confinement Induced by Local Strain or Doping Fluctuations 69
6. Superlattices 70
6.1. Superlattices Based on SiOx Layers 70
6.2. Superlattices Based on SiNx or CaF2 Layers 73
7. El From Rare Earth-Doped Si Nanoclusters 73
8. Conclusion 76
References 77
Surface and Superlattice 83
1. Introduction 83
2. Fabrication Methods 85
2.1. Molecular Beam Epitaxy 85
2.2. Magnetron Sputtering 85
2.3. Electron Beam Deposition 86
2.4. Plasma-Enhanced Chemical Vapour Deposition 86
2.5. Thermal Reactive Evaporation 87
2.6. Low-Pressure Chemical Vapor Deposition and Atmospheric Pressure Chemical Vapor Deposition 87
3. Deposition Parameters 87
3.1. Substrate Temperature 87
3.2. Base Vacuum and Gas Partial Pressure 88
3.3. Postannealing Treatment 89
4. Characterization 91
4.1. Theoretical Analysis 91
4.2. Experimental Analysis 92
4.2.1. Electron Microscopy 92
4.2.2. X-Ray Diffraction and Reflectivity 93
4.2.3 . Optical Absorption Spectroscopy 93
4.2.4. Vibrational Spectroscopies: Raman and FTIR 94
Raman Spectroscopy 94
Infrared Spectroscopy 96
4.2.5. Other Techniques 97
5. Optical Properties of Si/Sio2 Superlattices 98
5.1. Photoluminescence 98
5.2. Electroluminescence 100
6. Optical Properties of Rare-Earth Doped Silicon Nanostructures 101
6.1. Silicon Resonating Quantum Structures 101
6.2. Si/SiO2 Superlattices 103
6.3. Miscellaneous 107
7. Other Silicon-Based Superlattices 107
7.1. Si/CaF2 SLs 107
7.2. Si/SiNx SLs 108
8. Conclusions 110
References 111
Optical Gain and Lasing in Low Dimensional Silicon: The Quest for an Injection Laser 115
1. Basic on Light Amplification and Gain 116
2. Limitation of Silicon For Light Amplification 119
3. Optical Gain in Silicon Nanocrystals 121
4. Light Amplification in Er Coupled to Si Nanoclusters 127
5. Optical Gain in Nanostructured Silicon 131
5.1. Stimulated Emission by Nanocavities in Silicon 131
5.2. Stimulated Emission by Dye Impregnation in Nanoporous Oxidized Silicon 132
6. Conclusions 133
References 134
Silicon Single-Electron Devices 136
1. Introduction 136
2. Operating Principle of Single-Electron Devices 137
3. Fabrication of Silicon Single-Electron Devices 140
4. Single-Electron Memory 149
4.1. Multi-Nanodot Memory 149
4.2. Memories Using a Single-Electron Transistor as a Sensing Device 151
4.3. Multiple-Value Memories Using a Single-Electron Transistor 153
5. Single-Electron Logic 157
5.1. SET-Based Logic 158
5.2. Multigate SET and Pass Transistor Logic 163
5.3. Multiple-Valued Logics 165
5.4. Logic Applications Using Negative-Differential Conductance 166
6. Single-Electron Transfer and Single-Electron Detection 167
6.1. Development of Single-Charge Transfer Device 168
6.2. Si-Based Single-Charge Transfer Devices 171
6.3. Single-Electron Detection 177
References 180
Room Temperature Silicon Spin-Based Transistors 184
1. Introduction 184
2. Spin-Based Transistors: The Early History 185
3. The Spin-Valve Transistor 187
4. The Spin Diffusion Transistor 191
5. Spin-Mosfets 196
6. Outlook 205
References 205
Electron Transport in Nanocrystalline Silicon 208
1. Introduction to Electron Transport in Nanocrystalline Silicon 208
2. Electron Transport in Nanoscale Nc-Si Structures 211
2.1. Coulomb Blockade 211
2.2. Resonant Tunneling 214
2.3. Electron Interaction in Strongly Coupled Double Nc-Si Dots 216
3. Phononic States and Ballistic Electron Transport in Periodic Nc-Si Structures 219
3.1. Electronic States in One-Dimensional Si Nanodot Arrays (1DSiNDA) Interconnected with Thin Oxide Layers 220
3.2. Phononic States and Reduction of Acoustic Phonon Scattering Potential due to Phonon Modulation 222
3.3 Intra- and Inter-Miniband Scattering 226
3.4 Ballistic Electron Emission from Si Nanodot Array Structures 229
References 231
Silicon Nanocrystal Nonvolatile Memories 233
1. Introduction 233
2. Traditional Nonvolatile Memory Scaling 234
3. Silicon Nanocrystal Memories and Ideal Nanocrystal Properties 236
4. Direct Tunneling Memories 239
5. Hci Programming/Fowler-Nordheim Erase Si Nanocrystal Memories 243
6. Silicon Nanocrystal Deposition Processes 247
7 Effects of Nanocrystal Fluctuations 252
8 Memory Array Results 256
9 Summary 258
References 258
Nanocrystalline Silicon Ballistic Electron Emitter 260
1. Introduction 261
2. Fabrication and Basic Characteristics of the Bsd 261
2.1. BSD on Silicon Wafers 261
2.2. BSD on Glass Substrates 262
2.3. Measurements and Analyses 262
2.4. Emission Characteristics of the BSD 264
2.5. Energy Distribution of Emitted Electrons 266
2.6. Emission Uniformity and Angular Dispersion 267
3. Ballistic Emission Model 268
4. Correlation Between Nanostructures and Emission Performance 271
4.1. Nanocrystallisation of LPCVD-Deposited Polysilicon 271
4.2. Ballistic Transport Channel in the NPS Layer 272
4.3. Optical Characterisation of Silicon Nanostructures 274
5. Optimisation of Process and Device Parameters 277
5.1. Low-Temperature Processing 277
5.2. Analysis of Annealing Effect on Electrochemically Treated NPS by TDS 278
5.3. Analysis of ECO-Treated nc-Si by TEM 282
5.4. Existence of nc-Si and Electron Emission Characteristics 285
6. Effects of Surface Electrode on Electron Emission 290
6.1. Effect of UV/O3 Treatment in Electron Emission Efficiency 290
6.2. Effect of Carbon Layer on Heat Durability 293
7. Fabricated Bsd Model 294
8. Conclusions 299
References 300
Porous Silicon Optical Label-Free Biosensors 301
1. Background 301
1.1. The Need for Label-Free Biosensors 301
1.2. Material Science of Porous Silicon 303
1.3. Porous Silicon for Label-Free Biosensing: Principle, Advantages, and Achievement 305
2. Porous Silicon Photonic Bandgap Structure Biosensors: Design and Fabrication 307
2.1. Introduction to Photonic Bandgap Structures 307
2.2.2. Microcavity 309
2.2.3. Rugate Filter 310
2.3. Sensitivity of Porous Silicon Optical Sensors 310
2.3.1. Sensitivity Definition 310
2.3.2. Porous Silicon Single Layer Biosensor 311
2.3.3. Rugate Filter Biosensor 312
2.3.4. Microcavity Biosensor 313
2.4. Advantages of Porous Silicon PBG Microcavity Structures in Sensing Applications 313
2.5. Design of Porous Silicon 1-D PBG Microcavity Biosensors 314
2.5.1. Q-Factor 314
2.5.2. Influence of the Pore Size and Nanomorpholgy on Sensitivity 316
2.6. Fabrication of Porous Silicon One-Dimensional Photonic Bandgap Microcavities 318
3. Quantitative Detection Using Porous Silicon Microcavity Sensors 318
4. Biosensing Applications 321
4.1. DNA Detection 321
4.2. Gram Negative Bacteria Detection 322
4.3. Protein Sensing 323
4.4. IgG Sensor 324
4.5. Protein Sensor for Pathogenic E. coli Detection 325
5. Conclusions 328
References 329
Ultrasonic Emission from Nanocrystalline Porous Silicon 332
1. Introduction 332
2. Theoretical Bases of Sound Generation 333
3. Comparison with other Devices 336
4. Examples of Applications 338
5. Summary and Technological Perspective 340
References 341
Index 343

Erscheint lt. Verlag 11.12.2008
Reihe/Serie Nanostructure Science and Technology
Zusatzinfo XII, 344 p.
Verlagsort New York
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte ballistic electron emitter • Biosensor • dielectrics • electroluminescence diode, microcavity, and waveguide • Electronics • nanostructure • nanostructured semiconductors • Photonics • quantum-induced functions • semiconductor • silicon nanocrystals • silicon nanostructures • superlattice • Surface • visible luminescence
ISBN-10 0-387-78689-9 / 0387786899
ISBN-13 978-0-387-78689-6 / 9780387786896
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 37,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 65,45
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15