Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Foundations for Microwave Circuits - Gilbert H Owyang

Foundations for Microwave Circuits

Microfilm
881 Seiten
1989
Springer-Verlag New York Inc. (Hersteller)
978-0-387-96989-3 (ISBN)
CHF 125,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
The purpose of this volume is to collect in one place the essential fundamental principles for a group of microwave devices. The chosen devices are those which form the basic modules found in practical microwave systems. Thus, these devices provide the crucial building blocks in common microwave systems, and their inherent characteristics are also the basis of some of the fundamental concepts in more complex devices. The reader will require a basic knowledge of propagation in unbounded regions and of guided waves and some background in electro-magnetic radiation. This book is intended to serve students who have a one-year introductory course in electromagnetic field theory in addition to the freshman-level physics course in electricity, magnetism and waves.

I Review of Transmission Line Theory.- 1. Transmission Line Equations.- 2. Wave Parameters and Characteristic Impedance.- 2.1. Example: Determination of Propagation Constant — General Case.- 3. Interpretation of the Solution.- 4. Terminated Line.- 5. The Crank Diagram.- 6. The Short-Circuited Line.- 7. Quarter-Wave Transformer.- 8. Power Calculation — Complex Notation.- 9. Problems.- II Review on Waveguides.- 1. Maxwell’s Equations.- 2. Guided Waves.- 3. Transverse Electromagnetic (TEM) Waves.- 4. Transverse Electric (TE) Waves.- 5. Transverse Magnetic (TM) Waves.- 6. General Case.- 7. Group Velocity.- 8. Propagation Constant.- 9. Electromagnetic Energy.- 10. Poynting Theorem.- 11. Method of Separation of Variables.- 11.1. Laplace Equation in Cylindrical Coordinates.- 12. Rectangular Waveguide.- 13. Circular Waveguide.- 13.1. Field Distribution — TM01 Mode in Circular Guide.- 13.2. TE Field Distribution — Circular Guide.- 14. Problems.- III The Scattering Matrix.- 1. Introduction.- 2. The Scattering Matrix.- 2.1. Scattering Matrix of a Series Impedance.- 3. Definition of Scattering Coefficients.- 3.1. Appendix.- 3.2. Example: Scattering Matrix for a Two-Port Device.- 3.3. Example: Scattering Matrix for a Two-Port Network — Alternate Approach.- 4. Characteristic Equation of the Scattering Matrix.- 5. Eigenvalues and Eigenvectors.- 5.1. Example: Eigenvalues and Eigenvectors.- 6. Some Properties of Eigenvalues.- 6.1 Example: Show validity of Eq. (6.13).- 7. Multiple Eigenvalues.- 7.1. Example: Eigenvectors for Repeated Roots.- 8. Cayley-Hamilton Theorem.- 9. Eigenvectors and Eigenvalues of a Two-Port Device.- 9.1. Example: Scattering Matrix of a Shunt Admittance.- 10. Diagonalization of a Scattering Matrix — Distinct Eigenvalues.- 11. Diagonalization of a Symmetric Matrix.- 11.1. Example: Diagonalization.- 11.2. Inverse of a Matrix.- 12. Diagonalization — Multiple Eigenvalues.- 13. Unitary Property.- 14. Dissipation Matrix.- 15. Problems.- IV Immittance Matrices.- 1. Introduction.- 2. Impedance Matrix.- 3. Admittance Matrix.- 3.1. Example: Admittance of a Line Terminated by Reactances.- 4. Eigen-network.- 4.1. Example: Scattering Matrix of a Shunt Impedance.- 4.2. Example: Scattering Matrix of a Section of Uniform Transmission Line.- 5. Relations Between [S], [Z], and [Y].- 5.1. Example: Scattering Matrix of a Two-Port Device.- 6. Problems.- V Symmetrical Devices.- 1. Introduction.- 2. Reflection Operation.- 3. Symmetry Operations.- 4. Symmetry Matrix.- 5. Commutable Matrices.- 5.1. Determination of a Commutable Matrix.- 6. Properties of Commutable Matrices.- 7. Symmetrical Two-Port Junction.- 8. H-Plane T-Junction.- 8.1. Shifting reference Planes in a Scattering Matrix.- 8.2. E-Plane T-Junction.- 9. Symmetrical Y-Junction.- 10. Problems.- VI Directional Couplers.- 1. Introduction.- 2. Directional Couplers.- 3. Even- and Odd-Mode Theory.- 4. Lorentz Reciprocity Theorem.- 5. Probe Coupling in a Waveguide.- 6. Radiation from Linear Current Elements.- 7. Radiation from a Current Loop.- 8. Waveguide Coupling by an Aperture.- 9. Aperture in a Transverse Wall of a Waveguide.- 10. Side-wall Coupler — Even-Odd Mode Theory.- 11. Eigenvalue Theory.- 12. Problems.- VII Impedance and Mode Transformers.- 1. Quarter-Wave Transformer.- 2. Small-Reflection Theory.- 3. Multistep Impedance Transformer.- 4. Maximally Flat Transformer.- 4.1. Expansion of cos m?.- 5. Chebycheff Transformer.- 5.1. Chebycheff Polynomials.- 5.2. Example: Chebycheff Transformer.- 6. Perturbation in a Cavity.- 7. Perturbation in Waveguides.- 8. Dielectric Phase Shifter.- 9. Strip Attenuator.- 10. Polarization of Plane Waves.- 11. Quarter-Wave Plate.- 12. Problems.- VIII Ferrite Devices.- 1. Propagation in Ferrite.- 1.1. Magnetic Moment and Angular Momentum of Atomic Models.- 1.2. Angular Momentum.- 2. Permeability Tensor.- 2.1. Components of Susceptance Elements.- 3. Scalar Susceptibility.- 4. Faraday Rotation.- 4.1. Traveling Wave in the Negative z?-Direction.- 4.2. Verification of Equation (4–7).- 4.3 Frequency Response of the Propagation Constant.- 5. Isolator.- 6. Gyrator.- 7. Polarization of Guided Wave.- 8. Resonance Isolator.- 9. Problems.- IX Review on Resonators.- 1. Q Factor.- 2. Waveguide Resonant Circuits.- 3. Rectangular Cavity Resonators.- 4. Scattering Matrix of a Lossless Resonator.- 5. Resonator with Damping.- 6. Cavity with Shunt Elements.- 7. Transformer-Coupled Resonator.- 7.1. Mutual Coupling.- 7.2. Transformer.- 8. Problems.- X Review on System Functions.- 1. Linear System.- 1.1. Natural Frequencies.- 2. System Function.- 2.1 Properties of Network Function — One-terminal Pair Network.- 3. Properties of System Functions.- 3.1. Definition of Postive-Real Function.- 3.2. Some Properties of Poles and Zeros Located on the j?-Axis.- 4. Positive-Real Function.- 5. Properties of the Driving-Point System Function.- 6. Driving-Point Function of an LC Network.- 7. Realization by Partial Fraction Expansion.- 8. Realization by Continued Fraction.- 9. Magnitude and Frequency Normalization.- 9.1. Normalization.- 10. Frequency Transformation.- 11. Frequency Scaling.- 12. Low-Pass to High-Pass Transformation.- 13. Low-Pass to Band-Pass Transformation.- 14. Low-Pass to Band-Stop Transformation.- 15. Problems.- XI Normal Modes of a Waveguide.- 1. Orthogonality of Guided Waves.- 1.1. Green’s Theorem.- 2. Guided Wave Theory.- 3. Normal Modes.- 4. Orthogonal Functions for Electromagnetic Fields.- 5. Expansion of Fields in Normal Modes.- 6. Power and Energy Relations.- 7. Attenuation in Lossy Dielectric.- 8. Relation Between Energy Densities.- 9. Velocity of Energy Transport.- 10. Complex Frequency.- 11. Propagation with Complex Frequency.- 11.1. Example: Determination of Attenuation Coefficient — Real Frequency Case.- 12. Losses in the Guide Wall.- 13. Problems.- XII Resonant Cavity.- 1. Introduction.- 2. Normal-Mode Functions for the Cavity.- 2.1. Example: Equivalence of Eqs. (2–11b) and (2–12).- 3. Free Oscillations of a Cavity.- 3.1. Impedance of a Resonant Line Section.- 4. Input Impedance of a Cavity.- 5. Multi-Port Cavity.- 6. Electronic Discharge Within a Cavity.- 7. Problems.- XIII Resonant Cavity — 2.- 1. Single-Port Cavity — Traveling Wave Approach.- 2. Equivalent Circuit Representation.- 3. Single-Port Resonator — Equivalent Circuit.- 4. Unloaded Q.- 5. External Q.- 6. Loaded Q.- 7. Power Absorbed by a Cavity.- 8. Experimental Determination of Q’s.- 9. Frequency Scale.- 9.1. Example: Single-Port Resonator.- 10. Two-Port Cavity.- 11. Transmission Cavity.- 12. Problems.- XIV Filters.- 1. Introduction.- 2. Insertion Loss.- 3. Darlington’s Filter Synthesis.- 4. Analytic Continuation.- 5. Butterworth Low-Pass Response.- 5.1. Example: Design of a Maximally Flat Low-Pass Filter.- 6. Chebycheff Low-Pass Approximation.- 6.1. Example: Determination of s21(p?) for Chebycheff Low-Pass Approximation.- 6.2. Example: Determination of n and Tolerance ?.- 6.3. Example: Design of Chebycheff Filter.- 6.4. Verification of Eq. (6–23).- 7. Low-Pass to Periodic Band-Pass Transformation.- 8. Resonators in Cascade —General.- 9. Coincidental Cascaded Resonators.- 10. Quarter-Wavelength Coupled Resonators.- 10.1. Example: Quarter-Wavelength Coupled Nonsymmetrical Resonators.- 10.2. Example: Scattering Matrix for Quarter-Wavelength Coupling.- 11. Synthesis of Resonators in Cascade.- 12. Immittance Inverters.- 13. Multi-resonators in Cascade.- 13.1. Example: Resonators in Cascade.- 14. Problems.

Zusatzinfo Illustrations, unspecified
Verlagsort New York, NY
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
ISBN-10 0-387-96989-6 / 0387969896
ISBN-13 978-0-387-96989-3 / 9780387969893
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein: