Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Compressed Sensing & Sparse Filtering (eBook)

eBook Download: PDF
2013 | 2014
XII, 502 Seiten
Springer Berlin (Verlag)
978-3-642-38398-4 (ISBN)

Lese- und Medienproben

Compressed Sensing & Sparse Filtering -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary.

 Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems.

 This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.  

Introduction to Compressed Sensing and Sparse Filtering.- The Geometry of Compressed Sensing.- Sparse Signal Recovery with Exponential-Family Noise.- Nuclear Norm Optimization and its Application to Observation Model Specification.- Nonnegative Tensor Decomposition.- Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks.- Sparse Nonlinear MIMO Filtering and Identification.- Optimization Viewpoint on Kalman Smoothing with Applications to Robust and Sparse Estimation.- Compressive System Identification.- Distributed Approximation and Tracking using Selective Gossip.- Recursive Reconstruction of Sparse Signal Sequences.- Estimation of Time-Varying Sparse Signals in Sensor Networks.- Sparsity and Compressed Sensing in Mono-static and Multi-static Radar Imaging.- Structured Sparse Bayesian Modelling for Audio Restoration.- Sparse Representations for Speech Recognition.

Erscheint lt. Verlag 13.9.2013
Reihe/Serie Signals and Communication Technology
Signals and Communication Technology
Zusatzinfo XII, 502 p. 135 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Mathematik
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte Algorithmic Complexity • Bayesian approach • Complexity • Compressive sampling • compressive sensing • homotopy-type solutions LASSO • L1-norm penalties • penalising improbable model variables • sparse manifold learnin • sparse manifold learning • sub-Nyquist sampling rates • underdetermined system of linear equations
ISBN-10 3-642-38398-X / 364238398X
ISBN-13 978-3-642-38398-4 / 9783642383984
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Handbuch für Webentwickler

von Philip Ackermann

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 48,75
Das umfassende Handbuch

von Johannes Ernesti; Peter Kaiser

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 43,85