GPS Stochastic Modelling (eBook)
XXIII, 331 Seiten
Springer Berlin (Verlag)
978-3-642-34836-5 (ISBN)
This work extends the stochastic model using signal-to-noise ratio (SNR) measurements and time series analysis of observation residuals. The proposed SNR-based observation weighting model significantly improves the results of GPS data analysis, while the temporal correlation of GPS observation noise can be efficiently described by means of autoregressive moving average (ARMA) processes. Furthermore, this work includes an up-to-date overview of the GNSS error effects and a comprehensive description of various mathematical methods.
Xiaoguang Luo is currently a research associate at the Geodetic Institute of Karlsruhe Institute of Technology (KIT), Germany. He received his Ph.D. in Geodesy and Geoinformatics from KIT in 2012. He is interested in analysing the stochastic model, atmospheric and site-specific effects of GNSS observations, with a special focus on statistical testing and time series modelling.
Xiaoguang Luo is currently a research associate at the Geodetic Institute of Karlsruhe Institute of Technology (KIT), Germany. He received his Ph.D. in Geodesy and Geoinformatics from KIT in 2012. He is interested in analysing the stochastic model, atmospheric and site-specific effects of GNSS observations, with a special focus on statistical testing and time series modelling.
Introduction.- Mathematical Background.- Mathematical Models for GPS Positioning.- Data and GPS Processing Strategies.- Observation Weighting Using Signal Quality Measures.- Results of SNR-based Observation Weighting.- Residual-based Temporal Correlation Modelling.- Results of Residual-based Temporal Correlation Modelling.- Conclusions and Recommendations.- Quantiles of Test Statistics.- Derivations of Equations.- Additional Graphs.- Additional Tables.
Erscheint lt. Verlag | 6.7.2013 |
---|---|
Reihe/Serie | Springer Theses | Springer Theses |
Zusatzinfo | XXIII, 331 p. 129 illus., 127 illus. in color. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Naturwissenschaften ► Geowissenschaften ► Geografie / Kartografie | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | ARMA Process • AutoRegressive Moving Average Process • hypothesis testing • Remote Sensing/Photogrammetry • Signal-to-Noise Ratio (SNR) • Stochastic Model of GNSS Observations • Wavelet Analysis |
ISBN-10 | 3-642-34836-X / 364234836X |
ISBN-13 | 978-3-642-34836-5 / 9783642348365 |
Haben Sie eine Frage zum Produkt? |
Größe: 18,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich