Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Flexible AC Transmission Systems: Modelling and Control (eBook)

eBook Download: PDF
2012 | 2nd ed. 2012
XXVIII, 552 Seiten
Springer Berlin (Verlag)
978-3-642-28241-6 (ISBN)

Lese- und Medienproben

Flexible AC Transmission Systems: Modelling and Control - Xiao-Ping Zhang, Christian Rehtanz, Bikash Pal
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,40)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The extended and revised second edition of this successful monograph presents advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS). The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers.

 In the six years since the first edition of the book has been published research on the FACTS has continued to flourish while renewable energy has developed into a mature and booming global green business. The second edition reflects the new developments in converter configuration, smart grid technologies, super power grid developments worldwide, new approaches for FACTS control design, new controllers for distribution system control, and power electronic controllers in wind generation operation and control. The latest trends of VSC-HVDC with multilevel architecture have been included and four completely new chapters have been added devoted to Multi-Agent Systems for Coordinated Control of FACTS-devices, Power System Stability Control using FACTS with Multiple Operating Points, Control of a Looping Device in a Distribution System, and  Power Electronic Control for Wind Generation.

Title Page 2
Foreword 5
Preface 8
Preface to Second Edition 12
Contents 14
FACTS-Devices and Applications 28
Overview 29
Power Electronics 32
Semiconductors 33
Power Converters 35
Configurations of FACTS-Devices 40
Shunt Devices 40
Series Devices 45
Shunt and Series Devices 50
Back-to-Back Devices 55
References 56
Modeling of Multi-Functional Single Converter FACTS in Power Flow Analysis 58
Power Flow Calculations 58
Power Flow Methods 58
Classification of Buses 59
Newton-Raphson Power Flow in Polar Coordinates 59
Modeling of Multi-Functional STATCOM 59
Multi-Control Functional Model of STATCOM for Powe rFlow Analysis 60
Implementation of Multi-Control Functional Model of STATCOM in Newton Power Flow 67
Multiple Solutions of STATCOM with Current Magnitude Control 71
Modeling of Multi-Control Functional SSSC 77
Multi-Control Functional Model of SSSC for Power Flow Analysis 78
Implementation of Multi-Control Functional Model of SSSC in Newton Power Flow 82
Numerical Results 85
Modeling of SVC and TCSC in Power Flow Analysis 89
Representation of SVC by STATCOM in Power Flow Analysis 89
Representation of TCSC by SSSC in Power Flow Analysis 90
References 91
Modeling of Multi-Converter FACTS in Power Flow Analysis 94
Modeling of Multi-Control Functional UPFC 94
Advanced UPFC Models for Power Flow Analysis 95
Implementation of Advanced UPFC Model in Newton Power Flow 102
Numerical Results 104
Modeling of Multi-Control Functional IPFC and GUPFC 106
Mathematical Modeling of IPFC in Newton Power Flow under Practical Constraints 107
Mathematical Modeling of GUPFC in Newton Power Flow under Practical Constraints 112
Numerical Examples 116
Multi-Terminal Voltage Source Converter Based HVDC 120
Mathematical Model of M-VSC-HVDC with ConvertersCo-located in the Same Substation 121
Generalized M-VSC-HVDC Model with Incorporation of DC Network Equation 127
Numerical Examples 130
Handling of Small Impedances of FACTS in Power Flow Analysis 134
Numerical Instability of Voltage Source Converter FACTS Models 134
Impedance Compensation Model 135
References 137
Modeling of FACTS-Devices in Optimal Power Flow Analysis 139
Optimal Power Flow Analysis 139
Brief History of Optimal Power Flow 139
Comparison of Optimal Power Flow Techniques 140
Overview of OPF-Formulation 142
Nonlinear Interior Point Optimal Power Flow Methods 144
Power Mismatch Equations 144
Transmission Line Limits 144
Formulation of the Nonlinear Interior Point OPF 145
Implementation of the Nonlinear Interior Point OPF 149
Solution Procedure for the Nonlinear Interior Point OPF 152
Modeling of FACTS in OPF Analysis 152
IPFC and GUPFC in Optimal Voltage and Power Flow Control 153
Operating and Control Constraints of GUPFC 153
Incorporation of GUPFC into Nonlinear Interior Point OPF 157
Modeling of IPFC in Nonlinear Interior Point OPF 163
Modeling of Multi-Terminal VSC-HVDC in OPF 165
Multi-Terminal VSC-HVDC in Optimal Voltage and Power Flow 165
Operating and Control Constraints of the M-VSC-HVDC 166
Modeling of M-VSC-HVDC in the Nonlinear Interior Point OPF 167
Comparison of FACTS-Devices with VSC-HVDC 169
Comparison of UPFC with BTB-VSC-HVDC 169
Comparison of GUPFC with M-VSC-HVDC 171
Appendix: Derivatives of Nonlinear Interior Point OPF with GUPFC 174
First Derivatives of Nonlinear Interior Point OPF 174
Second Derivatives of Nonlinear Interior Point OPF 176
References 179
Modeling of FACTS in Three-Phase Power Flow and Three-Phase OPF Analysis 183
Three-Phase Newton Power Flow Methods in Rectangular Coordinates 184
Classification of Buses 184
Representation of Synchronous Machines 185
Power and Voltage Mismatch Equations in Rectangular Coordinates 186
Formulation of Newton Equations in Rectangular Coordinates 188
Three-Phase Newton Power Flow Methods in Polar Coordinates 194
Representation of Generators 194
Power and Voltage Mismatch Equations in Polar Coordinates 195
Formulation of Newton Equations in Polar Coordinates 196
SSSC Modeling in Three-Phase Power Flow in Rectangular Coordinates 197
Three-Phase SSSC Model with Delta/Wye Connected Transformer 198
Single-Phase/Three-Phase SSSC Models with Separate Single Phase Transformers 206
Numerical Examples 208
UPFC Modeling in Three-Phase Newton Power Flow in Polar Coordinates 213
Operation Principles of the Three-Phase UPFC 214
Three-Phase Converter Transformer Models 215
Power Flow Constraints of the Three-Phase UPFC 216
Symmetrical Components Control Model for Three-Phase UPFC 221
General Three-Phase Control Model for Three-Phase UPFC 224
Hybrid Control Model for Three-Phase UPFC 226
Numerical Examples 228
Three-Phase Newton OPF in Polar Coordinates 233
Appendix A - Definition of Ygi 235
Appendix B - 5-Bus Test System 236
References 237
Steady State Power System Voltage Stability Analysis and Control with FACTS 239
Continuation Power Flow Methods for Steady State Voltage Stability Analysis 240
Formulation of Continuation Power Flow 240
Modeling of Operating L imits of Synchronous Machines 242
Solution Procedure of Continuation Power Flow 243
Modeling of FACTS-Control in Continuation Power Flow 244
Numerical Results 244
Optimization Methods for Steady State Voltage Stability Analysis 249
Optimization Method for Voltage Stability L imit Determination 250
Optimization Method for Voltage Security Limit Determination 251
Optimization Method for Operating Security Limit Determination 251
Optimization Method for Power Flow Unsolvability 252
Numerical Examples 254
Security Constrained Optimal Power Flow for Transfer Capability Calculations 256
Unified Transfer Capability Computation Method with Security Constraints 257
Solution of Unified Security Constrained T ransfer Capability Problem by Nonlinear Interior Point Method 259
Solution Procedure of the Security Constrained Transfer Capability Problem 265
Numerical Results 265
References 269
Steady State Voltage Stability of Unbalanced Three-Phase Power Systems 271
Steady State Unbalanced Three-Phase Power System Voltage Stability 271
Continuation Three-Phase Power Flow Approach 272
Modeling of Synchronous Machines with Operating Limits 272
Three-Phase Power Flow in Polar Coordinates 273
Formulation of Continuation Three-Phase Power Flow 275
Solution of the Continuation Three-Phase Power Flow 277
Implementation Issues of Continuation Three-Phase Power Flow 278
Numerical Results 279
Steady State Unbalanced Three-Phase Voltage Stability with FACTS 287
STATCOM 288
SSSC 289
UPFC 291
References 292
Congestion Management and Loss Optimization with FACTS 294
Fast Power Flow Control in Energy Markets 294
Operation Strategy 294
Control Scheme 296
Placement of Power Flow Controllers 297
Economic Evaluation Method 300
Modelling of PFC for Cross-Border Congestion Management 301
Determination of Cross-Border Transmission Capacity 305
Estimation of Economic Benefits through PFC 306
Quantified Benefits of Power Flow Controllers 309
Transmission Capacity Increase 309
Loss Reduction 311
Appendix 314
References 315
Non-intrusive System Control of FACTS 316
Requirement Specification 316
Modularized Network Controllers 317
Controller Specification 318
Architecture 319
NISC-Approach for Regular Operation 321
NISC-Approach for Contingency Operation 323
References 324
Autonomous Systems for Emergency and Stability Control of FACTS 325
Autonomous System Structure 325
Autonomous Security and Emergency Control 327
Model and Control Structure 327
Generic Rules for Coordination 328
Synthesis of the Autonomous Control System 331
Adaptive Small Signal Stability Control 337
Autonomous Components for Damping Control 337
Verification 338
Failure of a Transmission Line 340
Increase of Load 342
References 344
Multi-agent Systems for Coordinated Control of FACTS-Devices 345
Challenges for Coordinated Control 345
Multi-agent System Structure 346
Communication Model 346
Influence Area of a PFC 349
Distributed Coordination 351
Verification 355
Tripping of a Transmission Line 355
Increase of Load 358
References 360
Wide Area Control of FACTS 362
Wide Area Monitoring and Control System 362
Wide Area Monitoring Applications 365
Corridor Voltage Stability Monitoring 365
Thermal Limit Monitoring 369
Oscillatory Stability Monitoring 370
Topology Detection and State Calculation 375
Loadability Calculation Based on OPF Techniques 377
Voltage Stability Prediction 378
Wide Area Control Applications 381
Predictive Control with Setpoint Optimization 382
Remote Feedback Control 385
References 392
Modeling of Power Systems for Small Signal Stability Analysis with FACTS 393
Small Signal Modeling 394
Synchronous Generators 394
Excitation Systems 396
Turbine and Governor Model 398
Load Model 398
Network and Power Flow Model 401
FACTS-Models 401
Study System 408
Eigenvalue Analysis 409
Small Signal Stability Results of Study System 409
Eigenvector, Mode Shape and Participation Factor 415
Modal Controllability, Observability and Residue 418
References 422
Linear Control Design and Simulation of Power System Stability with FACTS 423
H-Infinity Mixed-Sensitivity Formulation 424
Generalized H-Infinity Problem with Pole Placement 425
Matrix Inequality Formulation 427
Linearization of Matrix Inequalities 428
Case Study 430
Weight Selection 430
Control Design 431
Performance Evaluation 434
Simulation Results 435
Case Study on Sequential Design 438
Test System 438
Control Design 439
Performance Evaluation 440
Simulation Results 441
H-Infinity Control for Time Delayed Systems 444
Smith Predictor for Time-Delayed Systems 445
Problem Formulation Using Unified Smith Predictor 449
Case Study 451
Control Design 451
Performance Evaluation 454
Simulation Results 454
References 458
Power System Stability Control Using FACTS with Multiple Operating Points 460
Introduction 460
LMI Based Techniques for Damping Control Design 460
The Technical Challenges of LMI Based Damping Control Design for Multi-model Systems 461
Nonlinear Matrix Inequalities Formulation of FACTS Stability Control Considering Multiple Operating Points 462
Multi-model System 462
A Two-Step Design Approach for the Output Feedback Controller 463
First Step: Determination of the Variable K 464
Second Step: Determination of Variables Ak and Bk 466
Extension to H2 and H? Performances 470
First Step: Determining K for Multi-objective Control 471
Second Step: Determining Ak and Bk for Multi-objective Control 472
H? Performance 474
H2 Performance 475
Remarks on the Two-Step Control Design Approach 478
Two-Step Control Design Approach for the Single-Machine-Infinite-Bus 478
Single-Machine-Infinite-Bus (SMIB) 478
Pole Placement Based Damping Controller Design Using the Two-Step Approach 480
Comparison MLMI with SLMI Using Nonlinear Simulations 483
Two-Step Control Design Approach for the Multi-machine System 484
Multi-machine Test System 484
Two-Step Damping Controller Design for the Multi-machine System 485
Performance Evaluation 487
Nonlinear Simulations 488
Alternative Two-Step Control Design Approach for the Multi-machine System 490
Introduction of SCADA/EMS 490
Alternative Two-Step Damping Controller Design Approach 491
Numerical Examples 492
Summary 494
References 495
Control of a Looping Device in a Distribution System 497
Overview of a Looping Device in a Distribution System 497
Local Control of Looping Device 500
Estimation of Line Voltage 500
Loop Power Flow Control 501
Reactive Power Control 502
Approximation Control 503
Objective Function and Optimal Control 503
Approximation Using the Least-Squares Method 505
Simulation 506
Demonstration 512
Field Test System 512
Simple Control for Testing 513
Testing Conditions 514
Testing Results 515
References 517
Power Electronic Control for Wind Generation Systems 518
Introduction 518
WT with DFIG 520
Modelling and Control of WT with DFIG 520
Model of WT with DFIG 524
Small Signal Stability Analysis of WT with DFIG 531
Dynamic Model of WT with DFIG 531
Small Signal Stability Analysis Model of WT with DFIG 532
Small Signal Stability Analysis of WT with DFIG 533
Dynamic Simulations 536
Model of WT with DDPMG 538
Model of WT with DDPMG 539
Small Signal Stability Analysis of WT with DDPMG 544
Small Signal Stability Analysis Model 544
Small Signal Stability Analysis of WT with DDPMG 545
Dynamic Simulation on Four-Machine System 547
Nonlinear Control of Wind Generation Systems 548
Nonlinear Control 548
Third-Order Model of WT with DFIG 549
Nonlinear Control Design for the WT with DFIG 550
Dynamic Simulations 554
Modelling of Large Wind Farms Using System Dynamic Equivalence 555
Identification of Coherency Groups 556
Network Reduction 556
Aggregation of Dynamic Parameters 557
Dynamic Simulations 557
Interconnection of Large Wind Farms with Power Grid via HVDC Link 559
Development in VSC HVDC Technologies 559
VSC HVDC Control for Wind Farm Interconnection 561
Dynamic Simulations 562
References 562
Index 566

Erscheint lt. Verlag 24.2.2012
Reihe/Serie Power Systems
Zusatzinfo XXVIII, 552 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Schlagworte FACTS • Flexible AC Transmission Systems • Modelling • Network Control • Power Electronics • Power System Control • Power Systems
ISBN-10 3-642-28241-5 / 3642282415
ISBN-13 978-3-642-28241-6 / 9783642282416
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 8,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 38,10