First RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2018 (eBook)
XXV, 334 Seiten
Springer International Publishing (Verlag)
978-3-319-99519-9 (ISBN)
Digital fabrication has been termed the 'third industrial revolution', and is promising to revolutionize many disciplines, including most recently the construction sector. Both academia and industry see immense promise in cementitious materials, which lend themselves well to additive manufacturing techniques for digital fabrication in construction. With this recent trend and high interest in this new research field, the 1st RILEM International Conference on Concrete and Digital Fabrication (Digital Concrete 2018) was organized.
Since 2014, ETH Zurich has been host for the Swiss National Centre for Competence in Research (NCCR) for Digital Fabrication in Architecture, which is highly interdisciplinary and unique worldwide. In 2018, this NCCR opened the 'DFAB House', which incorporates many digital fabrication principles for architecture. It is also responsible for the 600 m2 Robotic Fabrication Lab and the first robotically built roof in the world. Held in tandem with Rob|Arch 2018, the leading conference for robotics in architecture, RILEM deemed it the right time to combine forces at this new conference, which will be the first large conference to feature the work of the recently created RILEM Technical Committee on Digital Fabrication with Cement-based Materials, among other leaders in this new field worldwide.
This conference proceedings brings together papers that take into account the findings in this new area. Papers reflect the varying themes of the conference, including Materials, Processing, Structure, and Applications.
Preface 6
Organization 8
Conference Committees 8
Conference Chair 8
Conference Vice Chair 8
International Scientific Committee 8
Local Organizing Committee 9
Contents 11
RILEM Publications 15
RILEM Proceedings (PRO) 15
RILEM Reports (REP) 24
Materials and Processing 26
Fresh and Hardened Properties of 3D Printable Geopolymer Cured in Ambient Temperature 27
Abstract 27
1 Introduction 27
2 Materials and Methods 28
2.1 Materials and Mixture Proportions 28
2.2 3D Printing Apparatus 29
2.3 Printing of 3D Printable Geopolymer 29
2.4 Characterization Methods 29
3 Results and Discussions 31
3.1 Extrudability 31
3.2 Open Time 31
3.3 Shape Retention Ability 32
3.4 Compressive Strength 32
4 Conclusion 34
References 35
Evolution of Concrete/Formwork Interface in Slipforming Process 36
Abstract 36
1 Introduction 36
2 Interfacial Behavior of Fresh Concrete: Physical Phenomena 38
2.1 Chemistry Origin and Hydration Consequences 38
2.2 Pore Water Pressure and Granular Stress (Terzaghi Equation) 39
3 Experimental Procedures 40
3.1 Materials and Mixing Procedure 40
3.2 Device and Procedure 40
4 Experimental Results and Discussions 41
4.1 Cement Hydration Characterization 41
4.2 Tangential Stress 42
4.3 Friction Law 44
4.4 Hypothesis of Mechanisms 45
5 Conclusion and Perspectives 46
Acknowledgements 46
References 46
Experience in Online Modification of Rheology and Strength Acquisition of 3D Printable Mortars 48
Abstract 48
1 Introduction 48
2 Materials and Methods 49
2.1 3D Printable Formulations and Preparation 49
2.2 Lab-Scale Extrusion Testing 51
2.3 Early Age Characterization Methods 52
3 Results 54
3.1 Texturometry 54
3.2 Scissometry 57
3.3 Lab Scale Extrusion 58
4 Discussion 59
Acknowledgements 61
References 61
A Framework for Performance-Based Testing of Fresh Mixtures for Construction-Scale 3D Printing 63
Abstract 63
1 Introduction 63
2 Experimental Program 64
2.1 The Step-by-Step Testing Procedure 64
2.2 Concrete Printing Setup, and Printing Mixtures Proportions 66
3 Testing and Results 67
4 Future Work 72
5 Conclusions 74
References 74
Characterization of 3D Printing Mortars Made with OPC/CSA Mixes 77
Abstract 77
1 Introduction 77
2 Materials and Methods 78
3 Results 80
4 Conclusion 83
Acknowledgments 83
References 83
Rheological and Water Transport Properties of Cement Pastes Modified with Diutan Gum and Attapulgite/Palygorskite Nanoclays for 3D Concrete Printing 85
Abstract 85
1 Introduction 85
2 Materials and Methods 86
2.1 Materials 86
2.2 Methods 87
3 Results 88
3.1 Sustained Stress Results 88
3.2 Water Retention Capacity 89
4 Conclusion 92
Acknowledgments 92
References 92
Rheological Control of 3D Printable Cement Paste and Mortars 94
Abstract 94
1 Introduction 94
2 Materials and Methods 95
3 Results and Discussion 97
3.1 Printing Mixtures A and B 97
3.2 Rheometry 98
3.3 Simulations of Flow Properties 101
4 Conclusion 102
References 103
Adapting Smart Dynamic Casting to Thin Folded Geometries 105
Abstract 105
1 Introduction 105
2 Slipforming Process Model 107
3 Materials and Methods 108
3.1 Initial Robotic Experiments 109
3.2 Offline Tests 110
3.3 Online Tests 111
3.4 Robotic Experiment as Material Evaluation 111
4 Experimental Results 112
4.1 Initial Robotic Experiments 112
4.2 Offline Tests 112
4.3 Online Tests 113
4.4 Robotic Experiment as Material Evaluation 113
5 Discussion of Results from Online, Offline and Robotic Experiments 114
6 Conclusion 116
Acknowledgements 116
References 116
Enhancing Printable Concrete Thixotropy by High Shear Mixing 118
Abstract 118
1 Introduction 118
2 Methods and Materials 119
2.1 Materials 119
2.2 Mixing Protocol 119
2.3 Rheological Measurements 119
2.4 Isothermal Calorimetry 120
2.5 Dynamic Light Scattering Measurements 120
3 Results 120
3.1 Rheological Measurements 120
3.2 Isothermal Calorimetry 120
3.3 Dynamic Light Scattering Measurements 123
4 Discussion 123
5 Conclusion 124
References 124
Discrete Element Simulations of Rheological Response of Cementitious Binders as Applied to 3D Printing 126
Abstract 126
1 Introduction 126
2 Discrete Element Method (DEM) and the Model Used 127
2.1 Burger’s Model 127
2.2 Calibration of Burger’s Model Using Mini Slump Test 129
3 Extrusion Experiments and DEM Modeling 131
3.1 Extrusion-Based 3D Printing and Extrusion Rheology 131
3.2 DEM Modeling of Extrusion Rheology and Printing 133
4 Conclusions 135
Acknowledgments 135
References 136
Mechanics and Structure 137
Three-Dimensional Printing Multifunctional Engineered Cementitious Composites (ECC) for Structural Elements 138
Abstract 138
1 Introduction 138
2 Experimental Program 140
2.1 Materials 140
2.2 Mix Processing 141
2.3 Test Specimens 141
2.4 Test Methods 143
3 Experimental Results and Discussions 145
3.1 Printability 145
3.2 Nitrogen Oxides Abatement 145
3.3 Mechanical Properties 146
4 Conclusions 149
Acknowledgements 150
References 150
Large Scale Testing of Digitally Fabricated Concrete (DFC) Elements 152
Abstract 152
1 Introduction 152
2 TU/e 3D Concrete Printing and Scale Effects 153
3 Nyborg Studio 155
3.1 Project and Design 155
3.2 Test Program en Specimens 156
3.3 Printing 157
3.4 Observations Before Testing 158
3.5 Vertical Flexural Test 159
3.6 Compression Test 160
3.7 Impact Test 162
3.8 Overall Conclusion on Structural Performance 162
4 Bicycle Bridge Gemert 163
4.1 Project and Design 163
4.2 Test Program 164
4.3 Printing 164
4.4 4-Point Bending Test 165
4.5 In-Situ Test 165
5 Discussion and Conclusion 168
Acknowledgements 169
References 169
Method of Enhancing Interlayer Bond Strength in 3D Concrete Printing 171
Abstract 171
1 Introduction 171
2 Materials and Methods 172
2.1 Mix Proportions 172
2.2 3D Printing Process 173
2.3 Testing Methods 174
3 Results and Discussion 175
3.1 Cube Tests 175
3.2 Flow Table Tests 175
3.3 Interlayer Bond Strength 176
4 Conclusion 178
Acknowledgements 178
References 179
Exploiting the Potential of Digital Fabrication for Sustainable and Economic Concrete Structures 180
Abstract 180
1 Introduction 180
2 Requirements of Mass-Market Concrete Structures 182
2.1 Necessity of Reinforcement 182
2.2 Limited Use of Geometrical Complexity 182
3 Benefits of Digital Fabrication for Structural Concrete 183
3.1 Key Potentials 183
3.2 Crack Initiators by 3D Printing Weak Interfaces 184
4 Conclusion and Outlook 188
Acknowledgements 189
References 189
Alternative Reinforcements for Digital Concrete Construction 190
Abstract 190
1 3D-Printed Steel Reinforcement 190
1.1 Introduction 190
1.2 Materials, Manufacture and Testing Techniques 191
1.3 Experimental Results 191
2 3D-Printed Strain-Hardening Cement-Based Composites 193
2.1 Introduction 193
2.2 Materials, Manufacture and Testing Techniques 194
2.3 Experimental Results 195
3 Summary 197
References 198
Additive Manufacturing and Characterization of Architectured Cement-Based Materials via X-ray Micro-computed Tomography 199
Abstract 199
1 Introduction 200
2 Methods 200
2.1 3D-Printing Setup 200
2.2 Ink Design, Mixing Procedure, and Curing 202
2.3 Slicing and Design 203
2.4 Micro-CT and Scanning Specimens 203
3 Results and Discussion 204
3.1 3D-Printed Lamellar Architecture Micro-CT (0.4X and 4X Scans) 204
3.2 Cast Specimen in 0.4X Micro-CT (0.4X Scan) 209
4 Summary 211
Acknowledgements 211
References 211
Hardened Properties of 3D Printable ‘One-Part’ Geopolymer for Construction Applications 213
Abstract 213
1 Introduction 213
2 Experimental Procedures 215
2.1 Materials and Mixture Proportions 215
2.2 Mixing, Printing, Curing and Testing of Specimens 215
3 Results and Discussion 217
3.1 Compressive Strength 217
3.2 Flexural Strength 218
3.3 Inter-layer Strength 219
4 Conclusions 220
Acknowledgements 221
References 221
Bond Strength in 3D Printed Geopolymer Mortar 223
Abstract 223
1 Introduction 223
2 Materials and Methods 224
3 Results and Discussion 226
4 Conclusions 228
Acknowledgement 229
References 229
Potentials of Steel Fibres for Mesh Mould Elements 230
Abstract 230
1 Introduction 230
1.1 Background About the Mesh Mould Project 230
1.2 Mechanical Behaviour of Mesh Mould Elements 231
2 Experimental Program 233
2.1 Test Specimens 233
2.2 Experimental Setup 234
2.3 Material Properties 234
3 Results and Discussion 236
3.1 Predicted Behaviour of the Mesh 236
3.2 Four-Point Bending Test 236
4 Conclusions and Outlook 238
Acknowledgments 239
References 239
Capillary Water Intake by 3D-Printed Concrete Visualised and Quantified by Neutron Radiography 240
Abstract 240
1 Introduction 240
2 Experimental 241
3 Results and Discussion 243
3.1 Fine-Grained 3D-Printed Concrete (Mixture A) 243
3.2 Portland Cement-Based 3D-Printed Concrete with Internal Curing by SAP (Mixture G) 245
References 247
Corrosion Challenges and Opportunities in Digital Fabrication of Reinforced Concrete 248
Abstract 248
1 Introduction 248
2 Corrosion Challenges in Digital Fabrication 249
2.1 Corrosion Challenges in “Steel Welding” Technology 250
2.2 Corrosion Challenges in “Slipforming” Technology 251
2.3 Corrosion Challenges in “3D Printing by Layer Extrusion” Technology 253
3 Opportunities for Corrosion Protection 253
4 Conclusion 254
References 255
The Effect of Print Parameters on the (Micro)structure of 3D Printed Cementitious Materials 257
Abstract 257
1 Introduction 257
2 Materials and Methods 258
2.1 Materials and Mix Composition 258
2.2 3D Printing Process 258
2.3 Surface Roughness 259
2.4 Mechanical Properties Testing 260
2.5 Porosity Measurements and Pore Size Distribution 261
3 Results and Discussion 262
3.1 Surface Roughness 262
3.2 Compressive Strength 262
3.3 Inter-layer Bonding Strength 263
3.4 Microstructure and Porosity 264
4 Conclusions 266
Acknowledgements 267
References 267
Compressive Strength and Dimensional Accuracy of Portland Cement Mortar Made Using Powder-Based 3D Printing for Construction Applications 268
Abstract 268
1 Introduction 268
2 Experimental Procedures 271
2.1 Materials 271
2.2 Printing Process and Test Methods 271
3 Results and Discussions 273
3.1 Linear Dimensional Accuracy 273
3.2 Compressive Strength 274
4 Conclusions 275
References 276
Impact of 3D Printing Direction on Mechanical Performance of Strain-Hardening Cementitious Composite (SHCC) 278
Abstract 278
1 Introduction 278
2 Materials and Methods 280
2.1 Experimental Program 280
2.2 Micromechanical Modelling 281
3 Results and Discussion 282
3.1 Experimental Results on Mechanical Properties 282
3.2 Modelling of Fibre-Bridging Constitutive Relations of SHCCs 284
4 Conclusions 286
References 287
Applications and More 289
Feasibility of Using Low CO2 Concrete Alternatives in Extrusion-Based 3D Concrete Printing 290
Abstract 290
1 Introduction 290
2 Binder Mix and Fresh Property of 3D Printable Concrete 291
2.1 Literature Survey of 3D Printable Binder Mix 291
2.2 Fresh Property of 3D Printable Concrete 291
3 Constraint and Opportunity to Develop SCMs-Based Printable Concrete 294
4 Conclusion 295
References 296
Experimental Investigation on the Mechanical Strength and Thermal Conductivity of Extrudable Foamed Concrete and Preliminary Views on Its Potential Application in 3D Printed Multilayer Insulating Panels 298
Abstract 298
1 Introduction 298
2 Materials and Methods 299
3 Results and Discussion 300
3.1 Extrusion Process 300
3.2 Compressive Strength 301
3.3 Indirect Tensile Strength 302
3.4 Thermal Conductivity 303
4 Outlook: Multilayer Insulating Panels 306
5 Conclusion 306
References 307
Development of a Shotcrete 3D-Printing (SC3DP) Technology for Additive Manufacturing of Reinforced Freeform Concrete Structures 308
Abstract 308
1 Introduction 308
1.1 Additive Manufacturing with Concrete 309
1.2 Potential of Shotcrete 3D Printing as an Additive Manufacturing Technique 309
1.3 Challenges of Shotcrete 3D Printing 310
2 Offline Process Control Based on Experimental Knowledge 311
3 Online Measurement and Process Control for SC3DP 312
3.1 Measurement and Control Concepts for Layer-Based Additive Manufacturing 313
3.2 Online Geometry Measuring for Shotcrete 3D Printing 314
3.3 Control Concept for Shotcrete 3D Printing and Experimental Implementation 314
4 Case Study: Multidirectional Printing and Introducing of Reinforcement 316
5 Conclusion 317
References 318
Challenges of Real-Scale Production with Smart Dynamic Casting 320
Abstract 320
1 Introduction 320
2 Fabrication and Challenges 321
2.1 Overall Fabrication Concept 322
3 Fabrication Challenges 323
3.1 Formwork, Actuation and Friction 323
3.2 Material Processing 324
4 Design and Production 326
4.1 Material Characterization 326
4.2 Structural Design 327
4.3 Material Processing Challenges: Reinforcement Integration 329
5 Conclusion 330
Acknowledgments 330
References 330
The Tectonics of Digitally Fabricated Concrete. A Case for Robotic Hot Wire Cutting 332
Abstract 332
1 Introduction 332
1.1 Form, Surface and Composition 332
2 Digital Fabrication Technologies in Concrete Architecture 333
2.1 Evaluating Existing and Emerging Solutions 333
2.2 Expanding Form, Surface and Composition 335
2.3 Critical Issues for Digital Fabrication in Concrete 336
3 A Case for Robotic Hot Wire Cutting 337
3.1 Description 337
3.2 Ruled Concrete Panels 337
3.3 The CorkCrete Arch 339
4 Conclusion 340
Acknowledgements 341
References 341
Compliance, Stress-Based and Multi-physics Topology Optimization for 3D-Printed Concrete Structures 344
Abstract 344
1 Introduction 344
2 Compliance-Based Topology Optimization 347
3 Stress-Based Topology Optimization 349
4 Multi-physics Topology Optimization 350
5 Conclusions and Final Remarks 351
Acknowledgements 352
References 352
Author Index 354
| Erscheint lt. Verlag | 29.8.2018 |
|---|---|
| Reihe/Serie | RILEM Bookseries | RILEM Bookseries |
| Zusatzinfo | XXV, 334 p. 197 illus. |
| Verlagsort | Cham |
| Sprache | englisch |
| Themenwelt | Technik ► Bauwesen |
| Technik ► Maschinenbau | |
| Schlagworte | 3D Printing • accelerators • admixtures • Cement hydration • Concrete and cement • Contour crafting • digital fabrication • rheology |
| ISBN-10 | 3-319-99519-7 / 3319995197 |
| ISBN-13 | 978-3-319-99519-9 / 9783319995199 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich