Analysis of Engineering Structures and Material Behavior (eBook)
John Wiley & Sons (Verlag)
978-1-119-32906-0 (ISBN)
|
Professor Josip Brnić, D. Sc., University of Rijeka - Faculty of Engineering, Croatia
Professor Josip Brnic, D. Sc., University of Rijeka - Faculty of Engineering, Croatia
Frequently Used Symbols and the Meaning of Symbols
| Symbol | Meaning |
| A | Cross‐sectional area |
| A0 | Initial cross‐sectional area |
| A1 | Cross‐sectional area after deformation |
| Ae | Finite element area |
| a | Crack length |
| a, b, c, d, e, t | Constants in stiffness matrix |
| a, [a] | Polynomial matrix |
| [a] | Transformation matrix |
| a0, (ai) | Initial crack length |
| ab, [ab] | Polynomial matrix at the boundary of finite element |
| aeff | Effective crack length |
| af | Failure crack length |
| B | Strain‐displacement matrix |
| B, N | Parameters |
| b | Width of rectangular |
| C | Constant, contour of considered curve, compliance |
| C | Elasticity matrix (matrix of elastic constants), structural damping matrix |
| C, m | Constants in Paris equation(“m” is strain hardening coefficient) |
| C, n, p, q | Experimentally derived constants in Forman‐Newman –Koning equation |
| Cb | Generalized elasticity matrix (bending of plate) |
| CF , mF | Constants in Forman equation |
| Cijkl | Fourth‐order tensor (elasticity tensor, elastic matrix or stiffness matrix) |
| CVN | Charpy impact energy(specimen with V‐notch) |
| CS | Elasticity matrix refers to shear stresses |
| ce | Finite element damping matrix (local coord. System) |
| D | Diameter |
| D | Plate flexural rigidity |
| D, p, r | Parameters |
| dε | Differential operator |
| dAn | Differential area of an arbitrary sloping section (plane) |
| dAx, dAy, dAz | Differential area on x, y, z direction |
| da | Increase in crack length (length of crack: a) |
| dλ | Coefficient |
| E | Modulus of elasticity |
| Ex, Ey, Ez | Young moduli for orthotropic materials |
| e | Position of shear center, distance between the centroid and the neutral axis, distance |
| ei | Invariants of strain deviator |
| eij, [e] | Deviator strain tensor |
| F | Force (intensity) |
| F | Force, loading |
| F, [F] | Force vector, concentrated force vector |
| Fcr | Critical force |
| Fi, Mi | Nodal forces |
| Fm | Known components of FR |
| FR | Vector of structure nodal forces. |
| tFR | Vector of externally applied nodal forces in the considered structure at time t |
| Fr | Unknown components of FR |
| FV | Vector of volume forces |
| tFσ | Vector of nodal forces that corresponds to the element stresses at the time t |
| f | Yield function, crack opening parameter (in Forman‐Newman‐de Koning Equation) |
| fe | Finite element nodal forces vector (local coord. system) |
| fij | Dimensionless function |
| f v, fx, fy, fz | Volume force vector and components forces(unit) |
| G | Shear modulus (modulus of rigidity) |
| Gxy, Gyz, Gzx | Shear moduli for orthotropic materials |
| h | Height of rectangular |
| Imin | Minimum moment of inertia |
| Ip | Polar moment of inertia |
| It | Torsion moment of inertia |
| Ix, Iy | Axial moment of inertia (area moment of inertia about an in‐plane axis) |
| Ixy | Centrifugal/deviation moment of inertia(product of areas) |
| I1, I2 | Principal (principal centroidal) moments of inertia |
| I1, I2, I3 | Stress tensor invariants |
| imin | Minimum radius of inertia |
| J | J‐integral (contour integral) |
| J | Jacobi matrix |
| Je | Elastic part of J |
| JIc | Fracture toughness |
| Jpl | Plastic part of J |
| J1, J2, J3 | Invariants of deviator stress tensor |
| K | Bulk modulus, kinetic energy, stress intensity factor |
| K | Global stiffness matrix (structural matrix) |
| K/SIF, KI , KII, KIII | Stress intensity factor, stress intensity factors for three opening modes (I, II, III) |
| K* | Cyclic strength coefficient |
| Kc, KIc, KIIc, KIIIc | Critical stress intensity factor |
| Keff | Effective stress intensity factor |
| KIc | Fracture toughness (Plane strain fracture toughness) |
| Ktot | Total stress intensity factor (as effect of assembled load) |
| k | Constant |
| ke | Finite element stiffness matrix (local coord. system) |
| Condensed stiffness matrix |
| , , [ūe] | Finite element stiffness matrix, vector of nodal forces and vector of nodal displacements in global coordinate system |
| L | Length (of beam, element) |
| Le | Effective (or free) buckling length |
| Li (i = 1,2,3) | Natural coordinates |
| L0(= G) | Gage length |
| L1 | Length of considered element after loading |
| l | Length |
| l, m, r | Direction cosines |
| li(z), li(Li), li(ξ), li(η), li(ζ) | Lagrange interpolating polynomials |
| M | Structural mass matrix |
| Mf | Bending moment (flexural moment) |
| Mt | Torsion moment(torque) |
| Mx, My | Bending moment (flexural moment) about in‐plane axis of cross‐section of element (beam), moments in the plate related to the unit of the length of plate. |
| Mxy | Twisting moment in plate |
| me | Finite element mass matrix (local coord. system) |
| N | Axial... |
| Erscheint lt. Verlag | 18.1.2018 |
|---|---|
| Sprache | englisch |
| Themenwelt | Technik ► Bauwesen |
| Technik ► Maschinenbau | |
| Schlagworte | Analysis • Bauingenieur- u. Bauwesen • Baustatik • Baustatik u. Baumechanik • Behavior • Civil Engineering • Civil Engineering & Construction • creep • Engineering • FEM • Festkörpermechanik • Finite Element Method • formulations • fracture mechanics • Maschinenbau • Material • Materials • materials characterization • Materials Science • Materialwissenschaften • Mathematical • mechanical engineering • Metallic • Models • pedagogical • rheological • solid mechanics • Strain • Stress • Structural Analysis • Structural engineering • Structural Mechanics • Structural Theory & Structural Mechanics • Structures • Testing • Textbook • Werkstoffprüfung |
| ISBN-10 | 1-119-32906-X / 111932906X |
| ISBN-13 | 978-1-119-32906-0 / 9781119329060 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich