Analysis of Engineering Structures and Material Behavior (eBook)
John Wiley & Sons (Verlag)
978-1-119-32910-7 (ISBN)
Theoretical and experimental study of the mechanical behavior of structures under load
Analysis of Engineering Structures and Material Behavior is a textbook covering introductory and advanced topics in structural analysis. It begins with an introduction to the topic, before covering fundamental concepts of stress, strain and information about mechanical testing of materials. Material behaviors, yield criteria and loads imposed on the engineering elements are also discussed. The book then moves on to cover more advanced areas including relationships between stress and strain, rheological models, creep of metallic materials and fracture mechanics. Finally, the finite element method and its applications are considered.
Key features:
- Covers introductory and advanced topics in structural analysis, including load, stress, strain, creep, fatigue and finite element analysis of structural elements.
- Includes examples and considers mathematical formulations.
- A pedagogical approach to the topic.
Analysis of Engineering Structures and Material Behavior is suitable as a textbook for structural analysis and mechanics courses in structural, civil and mechanical engineering, as well as a valuable guide for practicing engineers.
Professor Josip Brnić, D. Sc., University of Rijeka - Faculty of Engineering, Croatia
Theoretical and experimental study of the mechanical behavior of structures under load Analysis of Engineering Structures and Material Behavior is a textbook covering introductory and advanced topics in structural analysis. It begins with an introduction to the topic, before covering fundamental concepts of stress, strain and information about mechanical testing of materials. Material behaviors, yield criteria and loads imposed on the engineering elements are also discussed. The book then moves on to cover more advanced areas including relationships between stress and strain, rheological models, creep of metallic materials and fracture mechanics. Finally, the finite element method and its applications are considered. Key features: Covers introductory and advanced topics in structural analysis, including load, stress, strain, creep, fatigue and finite element analysis of structural elements. Includes examples and considers mathematical formulations. A pedagogical approach to the topic. Analysis of Engineering Structures and Material Behavior is suitable as a textbook for structural analysis and mechanics courses in structural, civil and mechanical engineering, as well as a valuable guide for practicing engineers.
Professor Josip Brnic, D. Sc., University of Rijeka - Faculty of Engineering, Croatia
Title Page 5
Copyright 6
Contents 9
Frequently Used Symbols and the Meaning of Symbols 17
Principal SI Units and the US Equivalents 25
SI Prefixes, Basic Units, Physical Constants, the Greek Alphabet 27
Important Notice Before Reading the Book 29
Preface 31
About the Author 33
Acknowledgements 35
Chapter 1 Introduction 37
1.1 The Task of Design and Manufacture 37
1.2 Factors that Influence the Design of Engineering Structures 37
1.3 The Importance of Optimization in the Process of Design and the Selection of Structural Materials 39
1.4 Commonly Observed Failure Modes in Engineering Practice 40
1.5 Structures and the Analysis of Structures 41
References 41
Chapter 2 Stress 43
2.1 Definition of Average Stress and Stress at a Point 43
2.2 Stress Components and Equilibrium Equations 44
2.2.1 Stress Components 44
2.2.2 Equilibrium Equations 45
2.3 Stress Tensor 46
2.3.1 Mean and Deviatoric Stress Tensors 46
2.4 States of Stress 48
2.4.1 Uniaxial State of Stress 48
2.4.2 Two-dimensional State of Stress 50
2.4.3 Three-dimensional State of Stress 54
2.4.3.1 Stress on an Arbitrary Plane 56
2.4.3.2 Stress on an Octahedral Plane 57
2.4.3.3 Principal Stresses and Stress Invariants 58
2.5 Transformation of Stress Components 60
References 64
Chapter 3 Strain 65
3.1 Definition of Strain 65
3.1.1 Some Properties of Materials Associated with Strain 66
3.1.1.1 Poisson´s Ratio 66
3.1.1.2 Volumetric Strain 66
3.1.1.3 Bulk Modulus 67
3.1.1.4 Modulus of Elasticity 68
3.1.1.5 Shear Modulus (Modulus of Rigidity) 68
3.2 Strain–Displacement Equations 69
3.3 Strain Tensors 71
3.3.1 Small Strain Tensor 71
3.3.2 Finite Strain Tensor 74
3.3.3 Mean and Deviatoric Strain Tensors 76
3.3.4 Principal Strains and Strain Invariants 77
3.3.4.1 Strain Tensor 77
3.3.4.2 Deviatoric Strain Tensor 78
3.4 Transformation of Strain Components 79
3.4.1 Mohr´s Circle 80
3.5 Strain Measurement 80
References 84
Chapter 4 Mechanical Testing of Materials 87
4.1 Material Properties 87
4.2 Types of Material Testing 88
4.3 Test Methods Related to Mechanical Properties 88
4.4 Testing Machines and Specimens 88
4.4.1 Static Tensile Testing Machine and Specimens 88
4.4.2 Impact Testing Machine and Specimens 90
4.4.3 Hardness Testing Machine 90
4.4.4 Fatigue Testing Machines 92
4.5 Test Results 92
4.5.1 Static Tensile Test Results 92
4.5.1.1 Engineering Stress–Strain Diagram 92
4.5.1.2 Creep Diagram/Curve 98
4.5.1.3 Relaxation Diagram/Curve 98
4.5.2 Dynamic Test Results 99
4.5.2.1 Tensile, Flexural and Torsional Test Results 99
4.5.2.2 Toughness Test Results 100
4.5.2.3 Fracture Toughness Test Results 100
References 100
Chapter 5 Material Behavior and Yield Criteria 103
5.1 Elastic and Inelastic Responses of a Solid 103
5.2 Yield Criteria 103
5.2.1 Ductile Materials 107
5.2.1.1 Maximum Shear Stress Criterion (Tresca Criterion) 107
5.2.1.2 Distortional Energy Density Criterion (von Mises Criterion) 110
5.2.2 Brittle Materials 112
5.2.2.1 Maximum Normal Stress Criterion 112
5.2.2.2 Maximum Normal Strain Criterion 112
References 114
Chapter 6 Loads Imposed on Engineering Elements 115
6.1 Axial Loading 115
6.1.1 Normal Stress 117
6.1.2 The Principal Stress 118
6.2 Torsion 121
6.2.1 Elastic Torsion – Shear Stress and Strain Analysis 122
6.2.1.1 Prismatic Bars: Circular Cross-section 122
6.2.1.2 Prismatic Bars: Noncircular Cross-section 131
6.2.1.3 Thin-walled Structures 132
6.2.2 Warping (Distortion) of a Cross-section 137
6.2.3 Inelastic Torsion and Residual Stress 139
6.2.3.1 Residual Stress 141
6.3 Bending 145
6.3.1 Beam Supports, Types of Beams, Types of Loads 145
6.3.2 Internal Forces – Bending Moments (Mf), Shear Force (Q), Distributed Load (q) 147
6.3.3 Principal Moments of Inertia of an Area (I1, I2) and Extreme Values of Product of Inertia (Ixy) of an Area 148
6.3.3.1 Axes Parallel to the Centroidal Axes 150
6.3.3.2 Rotation of the Coordinate Axes at the Observed Point (Rotated Axes) 151
6.3.4 Symmetrical Bending 152
6.3.4.1 Pure Bending 152
6.3.4.2 Nonuniform Bending 158
6.3.5 Nonsymmetrical Bending 162
6.3.6 Loading of Thin-walled Engineering Elements Shear Center
6.3.6.1 Shear Center 170
6.3.7 Beam Deflections 172
6.3.8 Bending of Curved Elements 176
6.4 Stability of Columns 185
6.4.1 Critical Buckling Force in the Elastic Range 186
6.4.1.1 Pin-ended Columns 186
6.4.1.2 Columns with Other End Conditions 189
6.4.2 Critical Buckling Stress in the Elastic Range 191
6.4.3.1 Local Buckling of the Column 193
6.5 Eccentric Axial Loads 195
6.5.1 Eccentric Axial Load Acting in a Plane of Symmetry 195
6.5.2 General Case of an Eccentric Axial Load 197
References 200
Chapter 7 Relationships Between Stress and Strain 203
7.1 Fundamental Considerations 203
7.2 Anisotropic Materials 205
7.3 Isotropic Materials 207
7.3.1 Determination of Hooke´s Law – Method of Superposition 211
7.3.2 Engineering Constants of Elasticity 214
7.4 Orthotropic Materials 216
7.5 Linear Stress–Strain–Temperature Relations for Isotropic Materials 220
References 222
Chapter 8 Rheological Models 225
8.1 Introduction 225
8.2 Time-independent Behavior Modeling 226
8.2.1 Elastic Deformation Modeling 226
8.2.1.1 Hooke´s Element (H Model) 226
8.2.2 Deformation Modeling after the Elastic Limit 228
8.2.2.1 Saint Venant Element (SV Model) 228
8.2.2.2 Saint Venant Element–Spring/(SV–Spring) 228
8.2.2.3 Saint Venant Element | Spring-Spring/(SV | Spring-Spring) 228
8.3 Time-dependent Behavior Modeling 230
8.3.1 Newton Element (N Model): Linear Viscous Dashpot Element 231
8.3.2 Maxwell Model (M=H-N) 231
8.3.2.1 Generalized Maxwell Model 233
8.3.3 Voigt-Kelvin Model (K=H | N) 234
8.3.3.1 Generalized Voigt–Kelvin Model 235
8.3.4 Standard Linear Solid Model (SLS) 236
8.3.5 Voigt–Kelvin-Hooke´s Model (K-H) 237
8.3.6 Burgers´ Model 238
8.4 Differential Form of Constitutive Equations 241
References 243
Chapter 9 Creep in Metallic Materials 245
9.1 Introduction 245
9.2 Plastic Deformation – General 247
9.2.1 Slip 247
9.2.2 Cleavage 248
9.2.3 Twinning 249
9.2.4 Grain Boundary Sliding 249
9.2.5 Void Coalescence 250
9.3 The Creep Phenomenon and Its Geometrical Representation 250
9.3.1 Creep Deformation Maps and Fracture Mechanism Maps 252
9.3.1.1 Creep Deformation Mechanisms 252
9.3.1.2 Fracture Micromechanisms and Macromechanisms 256
9.3.1.3 Creep Fracture Mechanisms 257
9.3.2 Short-time Uniaxial Creep Tests, Creep Modeling and Microstructure Analysis 259
9.3.2.1 Short-time Uniaxial Creep Tests 259
9.3.2.2 Creep Modeling 261
9.3.2.3 Microstructure Analysis – Basic 263
9.3.3 Long-term Creep Behavior Prediction Based on the Short-time Creep Process 264
9.3.3.1 Extrapolation Methods 266
9.3.3.2 Time–Temperature Parameters 267
9.3.4 Multiaxial Creep 268
9.4 Relaxation Phenomenon and Modeling 270
References 272
Chapter 10 Fracture Mechanics 275
10.1 Introduction 275
10.2 Fracture Classification 276
10.3 Fatigue Phenomenon 278
10.3.1 Known Starting Points 278
10.3.2 Stress versus Life Curves (?–N/S–N), Endurance Limit 278
10.4 Linear Elastic Fracture Mechanics (LEFM) 284
10.4.1 Basic Consideration 284
10.4.2 Crack Opening Modes 287
10.4.2.1 Stress Intensity Factor (K/SIF) 288
10.4.2.2 Plastic Zone Size around the Crack Tip 296
10.4.2.3 Plastic Zone Shape around the Crack Tip 299
10.5 Elastic–Plastic Fracture Mechanics (EPFM) 302
10.5.1 The J Integral 303
10.6 Experimental Determination of Fracture Toughness 306
10.6.1 Test Specimens: Shapes, Dimensions, Orientations and Pre-cracking 307
10.6.1.1 Shapes and Dimensions of the Specimens 307
10.6.1.2 Orientation of a Specimen Made from Base Material 308
10.6.1.3 Fatigue Pre-cracking 310
10.6.2 Fracture Toughness, KIc and the K–R Curve 310
10.6.2.1 R-curve (K–R Curve) 310
10.6.2.2 Plane Strain Fracture Toughness (KIc) Testing 313
10.6.3 Fracture Toughness JIc and the J–R Curve 315
10.6.3.1 R-curve (J–R Curve) 315
10.6.3.2 Fracture Toughness (JIc) Determination/Testing 316
10.7 Charpy Impact Energy Testing 320
10.8 Crack Propagation 324
10.8.1 Introduction 324
10.8.2 Fatigue Crack Growth 325
10.8.2.1 The Paris Equation 330
10.8.2.2 The Walker Equation 332
10.8.2.3 The Forman Equation 333
10.8.2.4 The Forman–Newman–de Koning Equation 333
10.8.3 Creep Crack Growth 333
10.8.4 Life Assessment of Engineering Components 334
10.8.4.1 Constant Amplitude Loading 334
10.8.4.2 Variable Amplitude Loading 334
10.8.5 Crack Closure 335
10.8.5.1 Elber Crack Closure Phenomenon 335
10.8.6 A Brief Review of Testing of Unnotched, Axially Loaded Specimens 337
References 345
Chapter 11 The Finite Element Method and Applications 349
11.1 The Finite Element Method (FEM) in the Analysis of Engineering Problems 349
11.1.1 Applications of FEM 349
11.1.2 The Advantages of Using the FEM 350
11.1.3 A Brief Overview of the Historical Development of the FEM 350
11.2 Linear Analysis of Structural Behavior 351
11.2.1 Formulations of Equilibrium Equations 352
11.2.1.1 Variational Formulation of the Finite Element (Equilibrium) Equation 354
11.2.2 Structures 370
11.2.3 Finite Elements 370
11.2.4 Shape Functions – Cartesian and Natural (Dimensionless) Coordinate Systems 370
11.2.4.1 Cartesian Coordinate System 371
11.2.4.2 Natural (Dimensionless) Coordinate System 377
11.2.5 One-dimensional Finite Elements 383
11.2.5.1 Basic 1-D Finite Elements 383
11.2.5.2 Finite Elements of Higher Order 395
11.2.6 Two-dimensional Finite Elements 399
11.2.6.1 Basic 2-D Finite Elements 403
11.2.6.2 Finite Elements of Higher Order 412
11.2.6.3 Transformation Procedure for the Finite Element Equation 414
11.2.7 Three-dimensional Finite Elements 415
11.2.7.1 Basic 3-D Finite Elements 417
11.2.7.2 Finite Elements of Higher Order 424
11.2.8 Isoparametric Finite Elements 429
11.2.8.1 Introduction 429
11.2.8.2 Isoparametric Representation 431
11.2.9 Bending of Elastic Flat Plates 434
11.2.9.1 Deformation Theories for Elastic Plates 434
11.2.9.2 Finite Elements Based on Kirchhoff Plate Theory 443
11.2.10 Basics of Dynamic Behavior of Elastic Structures 446
11.2.10.1 Mass Matrix of the Finite Element 449
11.2.10.2 Free, Undamped Vibrations of Constructions – Eigenvalues 450
11.3 A Brief Introduction to Nonlinear Analysis of Structural Behavior 457
11.4 Metal-forming Processes – Brief Overview 458
11.4.1 Introduction 458
11.4.2 Classification, Variables and Characteristics of Metal-forming Processes 459
11.4.2.1 Comparison of Hot and Cold Working Processes in Terms of Working Temperature, Shaping Force and Achieved Material ... 464
11.4.3 Basic Settings Related to the Theory of Metal-forming Processes 465
11.4.3.1 Strain-rate Tensor and Data Relating to Yield Criteria 466
11.4.3.2 Virtual Work-rate Principle 469
11.4.3.3 The Prandtl–Reuss Equations 469
11.4.3.4 The Governing Equations of Plastic Deformation 473
11.4.3.5 Shape Functions 473
11.4.3.6 Strain-rate Matrix 474
11.5 The Application of the Finite Element Method in Structural Analysis 474
11.5.1 One-dimensional Finite Elements: Finite Element Analysis of Truss Structure Deformation 475
11.5.2 Two-dimensional Finite Elements: J Integral Calculation 479
11.5.3 Special Two-dimensional Finite Elements in Shear Stress Analysis 483
11.5.3.1 Introduction 483
11.5.3.2 Application of General Quadrilateral Finite Elements 486
References 487
Index 489
EULA 499
| Erscheint lt. Verlag | 18.1.2018 |
|---|---|
| Sprache | englisch |
| Themenwelt | Technik ► Bauwesen |
| Technik ► Maschinenbau | |
| Schlagworte | Analysis • Bauingenieur- u. Bauwesen • Baustatik • Baustatik u. Baumechanik • Behavior • Civil Engineering • Civil Engineering & Construction • creep • Engineering • FEM • Festkörpermechanik • Finite Element Method • formulations • fracture mechanics • Maschinenbau • Material • Materials • materials characterization • Materials Science • Materialwissenschaften • Mathematical • mechanical engineering • Metallic • Models • pedagogical • rheological • solid mechanics • Strain • Stress • Structural Analysis • Structural engineering • Structural Mechanics • Structural Theory & Structural Mechanics • Structures • Testing • Textbook • Werkstoffprüfung |
| ISBN-10 | 1-119-32910-8 / 1119329108 |
| ISBN-13 | 978-1-119-32910-7 / 9781119329107 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich