Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Numerical Simulation and Experimental Investigation of the Fracture Behaviour of an Electron Beam Welded Steel Joint - Haoyun Tu

Numerical Simulation and Experimental Investigation of the Fracture Behaviour of an Electron Beam Welded Steel Joint

(Autor)

Buch | Hardcover
XVII, 171 Seiten
2017 | 1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-67276-2 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
In this thesis, the author investigates experimentally and numericallythe fracture behavior of an electron beam welded joint made fromtwo butt S355 plates. The 2D Rousselier model, the Gurson-Tvergaard-Needleman (GTN) model and the cohesive zone model (CZM) wereadopted to predict the crack propagation of thick compact tension (CT)specimens. Advantages and disadvantages of the three mentioned modelsare discussed. The cohesive zone model is suggested as it is easy to usefor scientists & engineers because the CZM has less model parametersand can be used to simulate arbitrary crack propagation. The resultsshown in this thesis help to evaluate the fracture behavior of a metallicmaterial. A 3D optical deformation measurement system (ARAMIS) andthe synchrotron radiation-computed laminography (SRCL) techniquereveal for the first time the damage evolution on the surfaceof the sampleand inside a thin sheet specimen obtained from steel S355. Damageevolution by void initiation, growth and coalescence are visualized in2D and 3D laminographic images. Two fracture types, i.e., a flat crackpropagation originated from void initiation, growth and coalescenceand a shear coalescence mechanism are visualized in 2D and 3D imagesof laminographic data, showing the complexity of real fracture. Inthe dissertation, the 3D Rousselier model is applied for the first timesuccessfully to predict different microcrack shapes before shear cracksarise by defining the finite elements in front of the initial notch withinhomogeneous f0-values. The influence of the distribution of inclusionson the fracture shape is also discussed. For the analyzed material, ahomogeneous distribution of particles in the material provides thehighest resistance to fracture.

Haoyun Tu is an Assistant Professor at the School of Aerospace Engineering and Applied Mechanics, Tongji University, PR China. He received his BE and ME from Northwestern Polytechnical University, China and Dr.-Ing. from University of Stuttgart, Germany. His research interests are on fracture mechanism of metals and welded joints from metals with experimental and finite element methods as well as on characterization techniques such as 3D optical deformation measurement and Synchrotron radiation-computed laminography (SRCL).

Introduction.- Scientific background.- Characterization of steel S355 electron beam welded (EBW) joints.- The Rousselier model.- The Gurson-Tvergaard-Needleman (GTN) model.- The Cohesive zone model.- Optical measurement of crack propagation with the ARAMIS system.- In situ laminography investigation of damage evolution in S355 base material.- Summary and Outlook.

Erscheinungsdatum
Reihe/Serie Springer Theses
Zusatzinfo XVII, 171 p. 190 illus., 163 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 456 g
Themenwelt Technik Maschinenbau
Schlagworte 2D Rousselier model • 3D optical deformation measurement system • Characterization and Evaluation of Materials • Chemistry and Materials Science • Cohesive zone model • Continuum Mechanics and Mechanics of Materials • Crack propagation • Gurson-Tvergaard-Needleman (GTN) model • Materials Science • mechanical engineering & materials • Mechanical engineering & materials • metal fracture behaviour • Metallic materials • metals technology / metallurgy • numerical fracture energy • shear coalescence mechanism • Surface chemistry & adsorption • surface chemistry & adsorption • Surfaces and Interfaces, Thin Films • synchrotron radiation-computed laminography • Testing of materials • void initiation
ISBN-10 3-319-67276-2 / 3319672762
ISBN-13 978-3-319-67276-2 / 9783319672762
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich