Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Hot Stamping Advanced Manufacturing Technology of Lightweight Car Body - Ping Hu, Liang Ying, Bin He

Hot Stamping Advanced Manufacturing Technology of Lightweight Car Body (eBook)

, , (Autoren)

eBook Download: PDF
2016 | 1st ed. 2017
XVI, 314 Seiten
Springer Singapore (Verlag)
978-981-10-2401-6 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool.

 This book is intended for researchers, engineers and graduate students in vehicle engineering, mechanical engineering, especially in the field of advanced manufacturing technology. The book also provides a useful reference for other new technology related temperature and phase transformation, such as aluminum-magnesium alloy hot stamping.



This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool. This bookis intended for researchers, engineers and graduate students in vehicle engineering, mechanical engineering, especially in the field of advanced manufacturing technology. The book also provides a useful reference for other new technology related temperature and phase transformation, such as aluminum-magnesium alloy hot stamping.

Preface 5
Acknowledgment 9
Contents 10
1 The Basis of Sheet Metal Forming Technology 16
1.1 The Development of Stamping Technology 17
1.2 The Basics of Sheet Metal Forming 19
1.2.1 The Process of Traditional Cold Stamping 19
1.2.2 The Cold Stamping Tool 20
1.2.3 Stamping Press 22
1.2.4 The Production Process of Stampings 24
1.3 Materials for Cold Stamping and Its Formability 26
1.3.1 Requirements on Materials for Cold Stamping 26
1.3.2 The Formability of Materials 27
1.4 Summary 32
References 33
2 Hot Stamping Technology and the Main Equipment 34
2.1 The Hot Stamping Technology of High Strength Steel 34
2.1.1 Brief Introduction of Hot Stamping Technology 34
2.1.2 Hot Stamping Process 36
2.1.3 Finite Element Simulation Analysis of Hot Stamping Technology 43
2.1.4 The Research Status of Hot Stamping 45
2.2 Hot Stamping Production Lines and the Key Equipments 47
2.2.1 Continuous Ring Heating Furnace 48
2.2.2 High-Temperature Resistant Robot Arm and Automatic Transfer Device for Loading and Unloading 50
2.2.3 Key Technologies for Design and Manufacture of Hot Stamping Dies 51
2.2.4 High-Speed Hydraulic Press for Hot Stamping 53
2.2.5 Central Intelligence Control Automatic Integrated System 54
2.2.6 Subsequent Shot Blasting, Trimming, and Punching Equipment 55
2.3 Summary 57
References 57
3 Performance of Hot Stamping High Strength Steel (HSS) Technology 60
3.1 Process and Principle of Hot Stamping HSS 60
3.1.1 Hot Stamping Plate 60
3.1.2 Hot Stamping Technology and Mechanism 63
3.2 Research in the basic technology of hot stamping high strength steel 65
3.2.1 Mechanical Properties of Hot Stamping Steel 65
3.2.2 Effect of Heating Temperature on the Mechanical Properties of Hot Stamping Steel 68
3.2.3 Effect of Holding Time on the Mechanical Properties of Hot Stamping Steel Plate 72
3.2.4 Effects of Cooling Rate on the Mechanical Behavior of Hot Stamping Steel Plate 74
3.3 The Study of Hot Stamping Material Toughness Process Experiment 78
3.3.1 Hot Stamping Steel Strength-Toughness Tempering Process 78
3.3.2 Hot Stamping Steel Strength-Toughness High Temperature Quenching Process 85
3.4 Tailored Properties of Hot Stamping Part 89
3.4.1 Forming Mechanism of Hot Stamping Gradient Strength Steel 90
3.4.2 Experimental Research on District Cooling Process of Gradient Strength Part 91
3.4.3 Exponential Relation Between Strength-Hardness-Cooling Rate of Hot Stamping Steel 98
3.5 Summary 105
References 106
4 The Basic Theory and Constitutive Equation of High Strength Steel for Hot Forming 110
4.1 Multifield Coupled Relationship Among Heat, Stress and Phase Transformation 110
4.1.1 Theoretical Analysis 110
4.1.2 The Determination of the Parameters 112
4.1.3 The Analysis and Discussion on the Experiment Results 115
4.1.4 Thermal-Mechanical Transformation Coupled Constitutive Model 117
4.2 Hot Forming Stress and Strain Analysis 119
4.2.1 Mixed Law 119
4.2.2 Strain Analysis 119
4.2.3 Stress Analysis 120
4.3 Constitutive Model of Hot Forming 122
4.3.1 Hot Forming Constitutive Relation of Total Strain Theory 122
4.3.2 Hot Forming Constitutive Relation of Incremental Theory 122
4.4 Summary 123
References 124
5 Constitutive Integration Algorithm of Crystal Thermal Deformation 126
5.1 The Constitutive Integration Method of Single Crystal Finite Deformation at Variable Temperature Conditions 126
5.1.1 Elastic Deformation Gradient as Basic Variable 126
5.1.2 Plastic Deformation Gradient as Basic Variable 129
5.1.3 Stress as the Basic Variable in the Algorithm 131
5.2 Comparison Between Two Deformation Gradient Algorithms 135
5.2.1 Elastic and Plastic Deformation Gradient 135
5.2.2 The Implicit and Explicit Algorithms 136
5.3 The Constitutive Integration Method of Polycrystalline 137
5.3.1 The Construction of Taylor Model 138
5.3.2 The Multiscale Finite Element Model 139
5.4 The Numerical Calculation and Experimental Verification of Thermal Tensile of the High Strength Steel 142
5.4.1 The Thermal–Mechanical Coupling Tensile Experiment 142
5.4.2 Comparison Analysis of the Numerical Simulation 145
5.5 Summary 148
References 148
6 Heat Transfer in Hot Stamping Process of High-Strength Steel 150
6.1 Heat Transfer Theory and Behavior Analysis 150
6.1.1 Basic Principle [1, 2] 150
6.1.2 Heat Transfer Behavior Analysis 152
6.2 Determination of Heat Transfer Coefficient in Hot Stamping Process 153
6.2.1 Method 153
6.2.2 Determination of Interfacial Heat Transfer Coefficient Between Blank and Tool 154
6.2.3 Determination of Convectional Heat Transfer Coefficient Between Tool and Cooling Water 158
6.3 The Other Factors Influencing the Heat Transfer Coefficient of Hot Stamping Process 165
6.3.1 The Effect of High-Temperature Oxidized Scale 165
6.3.2 The Influence of Heat Transfer Coefficient About Steel Sheet Surface Roughness 175
6.4 Summary 178
References 178
7 The Formability of High-Strength Steel for Hot Stamping 180
7.1 The Concepts of Plasticity and Deformation Resistance 180
7.2 Factors Influencing Plasticity and Deformation Resistance of Hot Stamping Steel 181
7.2.1 Chemical Composition 181
7.2.2 Metallic Structure 182
7.2.3 Deformation Temperature and Work Hardening 182
7.2.4 Deformation Rate 183
7.2.5 Cooling Rate 185
7.2.6 Deformation Degree 185
7.2.7 Size Factor 186
7.3 Material Properties of High-Strength Steel at Elevated Temperature 186
7.3.1 Uniaxial Tensile Experiment of High-Strength Steel at Elevated Temperature 186
7.3.2 Hardening Model of High-Strength Steel at Elevated Temperature 188
7.3.3 Effects of Hardening Capacity on Formability 190
7.3.4 Effects of Directional Anisotropy on Formability 192
7.4 Prediction of Forming Limit for Hot Stamping 194
7.4.1 Introduction of Forming Limit and Instability Theory 194
7.4.2 Test Principle of Forming Limit at Elevated Temperature 197
7.4.3 Test Equipment and Test Procedure of Forming Limit at Elevated Temperature 199
7.4.4 Three-Dimension Thermal Forming Limit Diagram and Its Application 201
7.5 Summary 205
References 205
8 Hot Stamping Simulation Algorithms of High-Strength Steels 208
8.1 Basic Descriptions of the Hot Stamping Simulation 208
8.2 Several Key Points in Numerical Simulation of Hot Stamping 210
8.2.1 Key technology of Multi-field Coupled Problem 210
8.2.2 Problems of High Temperature Contact Friction 211
8.2.3 The Simulation Technology of Temperature Field 212
8.2.4 The Simulation Technology of Phase Field 213
8.3 The Model Building and Simulation of Temperature Field in Hot Stamping 214
8.3.1 Summary of Temperature Field FEA in Hot Stamping Process 214
8.3.2 Variational Equation of Temperature Field 218
8.3.3 The Basic Equation of Temperature Shell Elements 222
8.3.4 Discreteness of Space Domain and Time Domain in Shell Transient Temperature Field 228
8.4 The Modeling and Simulation of Phase Field in Hot Stamping 229
8.4.1 Summary of Phase Field 229
8.4.2 The Basic Equation of Phase Field 230
8.4.3 The Solving Method of Phase Field 232
8.5 Hot Stamping Multi-Field Coupled Numerical Simulation 233
8.5.1 Static Explicit Algorithm for Hot Stamping Multi-Field Coupled Numerical Simulation 233
8.5.2 Dynamic Explicit Finite Element Formulation of Multi-Filed Coupled Hot Stamping Simulation 241
8.6 Summary 255
References 256
9 Lightweight of Car Body Structure Applied by Hot Stamping Parts 258
9.1 Lightweight of Car Body Structure Applied by Hot Stamping Parts 258
9.1.1 Hot Stamping Door Anti-crash Beam and Its Process Optimization 258
9.1.2 Application of Hot stamping Parts Based on CAE Crash of Whole Vehicle 262
9.1.3 Application of Hot stamping Parts in Concept Body Lightweight Design 266
9.1.4 The Application of Hot stamping Component in Lightweight Design of Large School Bus 275
9.2 The Application of Gradient Hardness Hot stamping Component in Vehicle Bodywork 279
9.2.1 The Research of Crash Energy Absorption Property of Gradient Hardness Hot stamping Component 280
9.2.2 The Application of Gradient Hardness Hot stamping B-Pillar in Vehicle Bodywork and Optimization Design 284
9.3 Summary 290
References 291
10 The Optimization Design and Manufacture of Hot Stamping Mold 293
10.1 The Key Technology of Hot Stamping Mold Design 293
10.1.1 The Whole Structure of Mold 293
10.1.2 The Selection of Material 294
10.1.3 Surface Engineering of Mold 295
10.1.4 Optimization Design of Mold Cooling System 297
10.2 The Optimization of Cooling System in Hot Stamping Dies 298
10.2.1 Optimization of Subsystem Decomposition 298
10.2.2 Virtual Prototype of the Optimization of Mold Cooling 299
10.2.3 Optimizing Core Technology Decomposition 302
10.2.4 Optimization Examples 303
10.3 The Manufacturing of Hot Stamping Mold 306
10.3.1 Mold Heat Treatment 306
10.3.2 Mold Surface Strengthening Treatment 306
10.4 The Thermomechanical Fatigue Test and Life Prediction Simulation of Hot Stamping Die 308
10.4.1 Fatigue Type of Hot Stamping Die 308
10.4.2 Thermomechanical Fatigue Test Device 309
10.4.3 Experimental Principle and Content 309
10.4.4 Experimental Results 311
10.4.5 Life Prediction Simulation 317
10.5 Summary 322
References 322
Index 324

Erscheint lt. Verlag 14.10.2016
Zusatzinfo XVI, 314 p. 218 illus., 134 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Technik Fahrzeugbau / Schiffbau
Technik Maschinenbau
Schlagworte heat transition conductivity • Hot stamping • lightweight car body • Manufacturing technology • sheet metal forming • simulating optimization method of hot stamping
ISBN-10 981-10-2401-4 / 9811024014
ISBN-13 978-981-10-2401-6 / 9789811024016
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Strömungsmechanik, Fahrdynamik, Thermomanagement, Akustik, …

von Thomas Schütz

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 219,95
Grundlagen und Praxis

von Anton Karle

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 38,95