Mechanical Behavior of Materials
Pearson (Verlag)
978-0-13-139506-0 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Norman E. Dowling earned his B.S. in civil engineering (structures) from Clemson University in Clemson, S.C., and his M.S. and Ph.D. in theoretical and applied mechanics from the University of Illinois in Urbana. An ASTM International member since 1972, Dowling serves on a number of E08 subcommittees and has recently been member-at-large of the E08 Executive Subcommittee. Professionally he has worked in the areas of fatigue, fracture, and deformation of engineering materials and components. Specific topics of interest include life prediction for irregular loading histories, plasticity effects on notches and in crack growth, and standard test methods for low cycle fatigue and for fatigue crack growth. He has also consulted on applications to engineering design, troubleshooting, and failure analysis. In addition to ASTM International, Dowling is a member of the Fatigue Design and Evaluation Committee of the Society of Automotive Engineers, ASM International, and Sigma Xi.
1 Introduction 1
1.1 Introduction 1
1.2 Types of Material Failure 2
1.3 Design and Materials Selection 10
1.4 Technological Challenge 16
1.5 Economic Importance of Fracture 18
1.6 Summary 19
References 20
Problems and Questions 20
2 Structure and Deformation in Materials 22
2.1 Introduction 22
2.2 Bonding in Solids 24
2.3 Structure in Crystalline Materials 28
2.4 Elastic Deformation and Theoretical Strength 32
2.5 Inelastic Deformation 37
2.6 Summary 43
References 44
Problems and Questions 45
3 A Survey of Engineering Materials 47
3.1 Introduction 47
3.2 Alloying and Processing of Metals 48
3.3 Irons and Steels 54
3.4 Nonferrous Metals 62
3.5 Polymers 66
3.6 Ceramics and Glasses 76
3.7 Composite Materials 82
3.8 Materials Selection for Engineering Components 87
3.9 Summary 93
References 95
Problems and Questions 96
4 Mechanical Testing: Tension Test and Other Basic Tests 100
4.1 Introduction 100
4.2 Introduction to Tension Test 105
4.3 Engineering Stress-Strain Properties 110
4.4 Trends in Tensile Behavior 119
4.5 True Stress-Strain Interpretation of Tension Test 125
4.6 Compression Test 133
4.7 Hardness Tests 139
4.8 Notch-Impact Tests 146
4.9 Bending and Torsion Tests 151
4.10 Summary 157
References 158
Problems and Questions 159
5 Stress-Strain Relationships and Behavior 172
5.1 Introduction 172
5.2 Models for Deformation Behavior 173
5.3 Elastic Deformation 183
5.4 Anisotropic Materials 196
5.5 Summary 205
References 207
Problems and Questions 207
6 Review of Complex and Principal States of Stress and Strain 216
6.1 Introduction 216
6.2 Plane Stress 217
6.3 Principal Stresses and the Maximum Shear Stress 227
6.4 Three-Dimensional States of Stress 235
6.5 Stresses on the Octahedral Planes 242
6.6 Complex States of Strain 244
6.7 Summary 249
References 251
Problems and Questions 251
7 Yielding and Fracture under Combined Stresses 257
7.1 Introduction 257
7.2
| Erscheint lt. Verlag | 27.2.2012 |
|---|---|
| Sprache | englisch |
| Maße | 10 x 10 mm |
| Gewicht | 1280 g |
| Themenwelt | Technik ► Maschinenbau |
| ISBN-10 | 0-13-139506-8 / 0131395068 |
| ISBN-13 | 978-0-13-139506-0 / 9780131395060 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich