Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Engineering Hydrology for Natural Resources Engineers (eBook)

eBook Download: PDF
2016 | 2. Auflage
John Wiley & Sons (Verlag)
978-1-118-92873-8 (ISBN)

Lese- und Medienproben

Engineering Hydrology for Natural Resources Engineers - Ernest W. Tollner
Systemvoraussetzungen
75,99 inkl. MwSt
(CHF 74,20)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This fully revised edition provides a modern overview of the intersection of hydrology, water quality, and water management at the rural-urban interface. The book explores the ecosystem services available in wetlands, natural channels and ponds/lakes. As in the first edition, Part I examines the hydrologic cycle by providing strategies for quantifying each component: rainfall (with NOAH 14), infiltration, evapotranspiration and runoff. Part II examines field and farm scale water quality with an introduction to erosion prediction and water quality. Part III provides a concise examination of water management on the field and farm scale, emphasizing channel design, field control structures, measurement structures, groundwater processes and irrigation principles. Part IV then concludes the text with a treatment of basin-scale processes. A comprehensive suite of software tools is available for download, consisting of Excel spreadsheets, with some public domain models such as HY-8 culvert design, and software with public domain readers such as Mathematica, Maple and TK solver.



Professor Ernest William Tollner, University of Georgia, Department of Biological and Agricultural Engineering; Driftmier Engineering Center, University of Georgia, Athens, GA, USA.
This fully revised edition provides a modern overview of the intersection of hydrology, water quality, and water management at the rural-urban interface. The book explores the ecosystem services available in wetlands, natural channels and ponds/lakes. As in the first edition, Part I examines the hydrologic cycle by providing strategies for quantifying each component: rainfall (with NOAH 14), infiltration, evapotranspiration and runoff. Part II examines field and farm scale water quality with an introduction to erosion prediction and water quality. Part III provides a concise examination of water management on the field and farm scale, emphasizing channel design, field control structures, measurement structures, groundwater processes and irrigation principles. Part IV then concludes the text with a treatment of basin-scale processes. A comprehensive suite of software tools is available for download, consisting of Excel spreadsheets, with some public domain models such as HY-8 culvert design, and software with public domain readers such as Mathematica, Maple and TK solver.

Professor Ernest William Tollner, University of Georgia, Department of Biological and Agricultural Engineering; Driftmier Engineering Center, University of Georgia, Athens, GA, USA.

Cover 1
Title Page 5
Copyright 6
Contents 7
Acknowledgments 17
Preface 19
About the companion website 21
Chapter 1 Natural resources engineering opportunities 23
1.1 Definitions 24
1.2 The hydrologic cycle and the water-soil-air-biotic continuum 25
1.3 Changing land uses due to societal forces 26
1.4 Natural resources and ecological engineering scope addressed in this text 27
1.4.1 Flood prevention 27
1.4.2 Erosion control 28
1.4.3 Water quality renovation and management 28
1.4.4 Drainage 29
1.4.5 Irrigation 29
1.4.6 Bioremediation 30
1.4.7 Watershed-stream assessment 30
1.4.8 Ecological Engineering 30
1.5 Outlook 33
References 36
Part I Quantifying the Hydrologic Cycle 39
Chapter 2 Precipitation 41
2.1 Precipitation mechanisms, types, and measurement 41
2.1.1 Precipitation defined 41
2.1.2 Condensation 42
2.1.3 Dynamic cooling 42
2.1.4 Contact and radiation cooling 42
2.1.5 Seasonal effects 42
2.1.6 Precipitation characteristics 43
2.1.7 Gaging precipitation 43
2.1.8 Measuring snowfall 45
2.2 Precipitation analysis 45
2.3 Introduction to hydrologic frequency analysis 47
2.3.1 Return period analysis 48
2.4 Local-scale precipitation analysis 51
2.4.1 Thiessen polygon method 51
2.5 Calculating storm magnitudes for design purposes 52
2.5.1 Storm simulation 52
2.5.2 Probable maximum precipitation 56
2.6 Pollution transport by precipitation 56
2.7 The water quality storm 57
2.8 Climate change and precipitation 57
2.9 Outlook 58
References 59
Chapter 3 Infiltration 61
3.1 Infiltration, percolation, and subsurface flow defined 61
3.2 Factors affecting infiltration of aqueous materials 62
3.2.1 Soil 62
3.2.2 Vegetation and soil organic matter 62
3.2.3 Other 62
3.3 Darcy's law 63
3.4 Water infiltration and percolation prediction 67
3.4.1 Horton equation 67
3.4.2 Holton equation 68
3.4.3 Kostiakov equation 68
3.4.4 Phillip equation 68
3.4.5 Green-Ampt equation 69
3.5 Infiltration measurement 72
3.6 Pollutant transport by subsurface flow 73
3.7 Outlook 75
References 77
Chapter 4 Evapotranspiration 79
4.1 Background and factors affecting evapotranspiration 79
4.2 Evaporation prediction approaches 80
4.3 Evaporation from water surfaces based solely on aerodynamic effects or mass balance 80
4.4 Evaporation prediction from the energy-balance-Bowen-ratio method 82
4.5 Reference evaporation prediction accounting for aerodynamic effects and energy balance-the Penman-Monteith combination equation method 84
4.6 Empirical and approximate methods for Ep 92
4.6.1 Jensen-Haise 92
4.6.2 The FAO modified Blaney-Criddle method 93
4.6.3 Priestly-Taylor method 94
4.6.4 Bowen ratio ET method 95
4.6.5 Comprehensive soil-canopy simulation 95
4.7 Physical simulation and measurements of ET 96
4.7.1 Evaporation and evapotranspiration measurement 97
4.7.2 Evapotranspiration in forest plantations and urban settings 98
4.7.3 Pollutants and evaporation suppression 98
4.8 Outlook 99
References 101
Chapter 5 Runoff 103
5.1 Background 103
5.1.1 Hydrograph shapes with compact watersheds 105
5.2 Watershed or catchment delineation 106
5.3 Runoff volume for a compact watershed 108
5.3.1 The National Resource Conservation Service runoff volume (curve number equation) 108
5.3.2 ? index 114
5.3.3 The WQS calculation 114
5.4 Peak runoff rate with compact watersheds 115
5.4.1 Rational method 115
5.4.2 The NRCS TR-55 graphical method 120
5.4.3 The ASABE drainage ditch design flowrate 123
5.4.4 The US Geological Survey (USGS) runoff equations 125
5.5 Selecting the design storm 125
5.5.1 Runoff and peak flow using frequency analysis 126
5.5.2 The unit hydrograph and runoff hydrograph development 126
5.5.3 Runoff hydrograph development for complex watersheds and the storms-generalized NRCS TR-20 method 128
5.6 Frequency analysis of runoff 133
5.7 Runoff from complex watersheds 134
5.8 Outlook 136
References 140
Part II Field- and Farm-Scale Water Quality 143
Chapter 6 Water erosion 145
6.1 Background 146
6.2 Factors affecting water erosion 146
6.2.1 Climate 146
6.2.2 Soil 146
6.2.3 Vegetation 147
6.2.4 Topography 147
6.3 Soil erosion versus sediment yield 147
6.4 Soil loss tolerance 148
6.5 Water erosion types 148
6.5.1 Interrill erosion 148
6.5.2 Rill erosion 148
6.5.3 Gully erosion 150
6.5.4 Stream channel erosion 150
6.6 Erosion mechanics 150
6.6.1 Raindrop dislodgement 150
6.6.2 Flow-induced erosion 151
6.7 Predicting soil detachment and upland erosion 151
6.7.1 Rrf 153
6.7.2 Ksl 153
6.7.3 Lf 156
6.7.4 Sf 158
6.7.5 Cprac 158
6.7.6 Pprac 158
6.7.7 Summary 160
6.8 The weighted Rrf Cprac factor for average annual erosion computation 160
6.9 Prediction of sediment yield 164
6.10 Legal aspects 167
6.11 Modeling approaches for sediment yield prediction 167
6.12 Erosion control practices in agriculture 170
6.12.1 Contouring 171
6.12.2 Strip cropping 171
6.12.3 Terracing 171
6.12.4 Conservation tillage 171
6.13 Erosion and sediment control with construction 171
6.14 Erosion and nutrient pollution 174
6.15 Outlook 174
References 178
Chapter 7 Water quality and management at farm/field scales 181
7.1 Water quality background 181
7.2 Important concepts and selected pollution measurement techniques 185
7.2.1 Concepts and definitions 185
7.2.2 Physical measures of pollution 186
7.2.3 Chemical measures of pollution 186
7.2.4 Biological measures of pollution 187
7.2.5 Summary 187
7.3 Scale effects 187
7.4 Best management practices for nonpoint pollution abatement 191
7.4.1 Selected BMP nomenclature 192
7.4.2 Structural and nonstructural management approach 193
7.4.3 Crop and animal production 194
7.4.4 Best Management Practices and ecology 196
7.5 Quantitative removal and renovation of selected pollution constituents 198
7.6 Modeling pollution fate and transport 200
7.7 Outlook 201
References 203
Part III Water management on the field and farm scales 205
Chapter 8 Open channel hydraulics - fundamentals 207
8.1 Hydraulics fundamentals 207
8.1.1 Channel elements and nomenclature 207
8.1.2 Fluid statics review 209
8.1.3 General and uniform flow relationships 209
8.2 Channel design and construction 216
8.2.1 Type A-solutions involving the Manning equation and continuity equation without additional constraints 218
8.2.2 Type B-Manning equation and continuity equation subject to velocity constraints erodible waterway stability design
8.2.3 Type C-solve the Manning equation and continuity channel subject to the minimal wetted perimeter with or without side slope z constraint: the economic channel 223
8.2.4 Flow transition analyses 225
8.2.5 Hydrograph routing in a channel or stream 226
8.2.6 Channel seepage losses 227
8.2.7 Construction 227
8.3 Outlook 230
References 234
Chapter 9 Vegetated waterways and bioswales 237
9.1 Vegetated waterways and diversions 237
9.1.1 Background 237
9.1.2 Channel planning 238
9.1.3 Design procedures 239
9.2 Bioswales 244
9.2.1 Design 244
9.2.2 Vegetated filter strips 245
9.2.3 Construction and maintenance 245
9.3 Outlook 247
References 248
Chapter 10 On-site erosion management 251
10.1 Terraces on the farm 252
10.1.1 Background 252
10.1.2 The revised ULSE terrace spacing for erosion prevention 254
10.1.3 Terrace channel length, cross-section, maximum grade, and capacity 255
10.1.4 Terrace outlet selection 260
10.1.5 Tile outlet terraces 260
10.1.6 Parallel terrace system planning and design 265
10.1.7 Layout, construction, and maintenance 266
10.2 Erosion and sediment control in urban areas 266
10.3 Outlook 269
References 273
Chapter 11 Hydraulics of water management structures 275
11.1 Structure types 276
11.2 Hydraulic concepts 280
11.2.1 Specific energy 280
11.2.2 Hydraulic jump 280
11.2.3 Subcritical-supercritical flow transitions 281
11.3 Stage-discharge relationships of weir inlets and flumes 281
11.3.1 Selected weir applications 282
11.4 Discharge relations of orifices and sluice gate inlet devices 287
11.4.1 Orifice and sluice gate applications 287
11.5 Flow hydraulics of closed conduits 287
11.5.1 Submerged inlets and free discharge 288
11.5.2 Submerged inlet and submerged outlet (Category C) 294
11.5.3 Inlets and outlets that are not submerged (Categories D and E) 295
11.6 Stage-discharge curves for culverts and spillways 297
11.7 Closed conduit systems for urban storm water collection 303
11.8 Water measurement structures for irrigation and aquaculture 304
11.9 Ecologic suitability 304
11.10 Outlook 306
References 309
Chapter 12 Hydraulics of Impoundments 311
12.1 Soils fundamentals for embankment construction 312
12.1.1 Soil survey 312
12.1.2 Soil properties 312
12.1.3 Soil classification 314
12.2 Flood routing through reservoirs and related structures 319
12.2.1 NRCS TR-55 routing 319
12.2.2 Storage routing 320
12.3 General pond design 325
12.3.1 Pond site selection 325
12.3.2 Pond and embankment seepage prediction and control 328
12.3.3 Embankment profile, protection, and volume 330
12.3.4 Spillway design 334
12.3.5 Embankment safety-selection of design storm 336
12.4 Applications 336
12.4.1 Agricultural pond 336
12.4.2 Sedimentation basins, traps, and barriers 338
12.4.3 Siting, construction, and safety issues 344
12.5 Outlook 345
References 346
Chapter 13 Shallow Groundwater Management 353
13.1 Surface drainage 354
13.2 Subsurface flow fundamentals 355
13.3 Pipe drainage 357
13.3.1 Pipe placement 357
13.3.2 Design drainage rates and capacity 360
13.3.3 Drainage system design and installation 363
13.4 Shallow wells 369
13.4.1 Applications 369
13.5 Uniform infiltration and drainage to a nearby stream 375
13.6 Outlook 376
References 378
Chapter 14 Introduction to irrigation 381
14.1 Irrigation systems overview 382
14.2 Soil-water-plant relations 384
14.2.1 Plant available water 387
14.2.2 The vadose zone 389
14.3 Soil intake rate 391
14.4 Water quality issues and leaching requirement for crop well-being 391
14.5 Irrigation efficiency 394
14.5.1 Conveyance efficiency 394
14.5.2 Water application efficiency 394
14.5.3 Water use efficiency 394
14.5.4 Other irrigation effectiveness indicators 395
14.6 Effective rainfall and irrigation scheduling 396
14.7 Computing ET requirements-peak ET 398
14.8 Computing ET requirements-seasonal water use 398
14.9 Irrigation pumping rate for meeting ET requirements 399
14.10 Water rights and legal underpinnings 400
14.11 Manual or wheel-move lateral sprinkler system design 400
14.11.1 Field data 401
14.11.2 Irrigation interval 402
14.11.3 Lateral sprinkler system set time 402
14.11.4 Lateral sprinkler system spacing 402
14.11.5 Sprinkler nozzle selection 402
14.11.6 Number of sprinklers per lateral system 404
14.11.7 Sizing the lateral sprinkler system 404
14.11.8 Pressure at lateral sprinkler inlets 404
14.11.9 Sizing the mainline 406
14.11.10 Sizing and positioning the centrifugal pump 406
14.11.11 Sprinkler irrigation design summary 409
14.12 Center pivot system specification 412
14.12.1 System size 412
14.12.2 System rotation interval 413
14.12.3 System flowrate 413
14.12.4 Maximum application rate 413
14.13 Linear move irrigation machines 416
14.14 Design for nontraditional applications 416
14.15 Microirrigation system design with pressure compensated emitters 419
14.16 Safety 423
14.17 Outlook 423
References 427
Part IV Basin-scale Processes 429
Chapter 15 Ecological assessment and engineering 431
15.1 Watershed assessment background 432
15.2 Watershed assessment methods 433
15.2.1 Predominant physical processes 433
15.2.2 Predominant biologically related processes 454
15.2.3 Predominant chemical processes 463
15.3 Principles of ecological engineering and ecosystem services 467
15.3.1 Ecological engineering 467
15.3.2 Ecosystem services 468
15.4 Outlook 469
References 472
Appendices 477
Appendix A Ethics, stakeholder views, case studies, and precision 479
A catalog of ethical views1 480
Making sense of the ethical catalogue-one person's view 483
Resource economics-"social traps" 484
Case study one-pitcher plant community viability 485
Case study 2-a hypothetical case concerning clean water act compliance 488
Significant digits and presentation precision 489
References 490
Appendix B Selected Excel® and other software package solutions 493
Selected symbolic solutions 494
Determining bottom width and depth in a trapezoidal channel with known slope, side slope, and permissible velocity 494
Determining depth and side slope in a triangular channel with known slope and permissible velocity 495
Determining slope and depth in a triangular channel with known flow rate, permissible velocity and side slope (z) 495
References 496
Appendix C Tractive force method for waterway design 497
Riprap-lined or earthen waterways 497
Vegetated waterways 499
References 501
Appendix D Land forming, structure selection, installation, and forces on conduits 503
Land forming computations 503
Impoundment and embankment volume calculations 505
Setting slope stakes for cuts and fills 508
Techniques for installation of channels and other structures 508
Layout of circular curves 509
Small channels or minor topography modifications 511
Terrace construction and layout 513
Post-construction stormwater management options2 516
Dry detention pond 516
Extended wet detention pond 516
Constructed wetlands 516
Grass swale 516
Filter strip and level spreader 517
Infiltration trench 517
Oil/grit separator 517
Source (EPA post-construction) key definitions 517
Materials specifications for channels and structures 520
Rural road construction 520
Buried pipe loading 521
Trench safety 524
References 525
Appendix E Selected units conversions 527
Index 529
EULA 537

Erscheint lt. Verlag 17.8.2016
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Hydrologie / Ozeanografie
Technik Bauwesen
Schlagworte Bauingenieur- u. Bauwesen • Civil Engineering & Construction • Climate • Companion • Design • earth sciences • Engineering • Environmental Engineering • Fluvial Hydrology & Limnology • Forces • Frequency • Geowissenschaften • Hydrologic • Hydrologic Cycle • Hydrologie der Flüsse u. Binnengewässer • Hydrologie der Flüsse u. Binnengewässer • Hydrologie im Bauwesen • Hydrology (Civil Engineering) • Introduction • Land • magnitudes • Opportunities • Part • pollution • precipitation • Purposes • Transport • Umwelttechnik • uses due • watersoilairbiotic continuum
ISBN-10 1-118-92873-3 / 1118928733
ISBN-13 978-1-118-92873-8 / 9781118928738
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich