Computational Learning for Adaptive Computer Vision
2016
|
1st ed. 2018
Springer-Verlag New York Inc.
978-0-387-23703-9 (ISBN)
Springer-Verlag New York Inc.
978-0-387-23703-9 (ISBN)
- Noch nicht erschienen
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Computer vision (CV) research seeks to provide computers with human-like perception capabilities so that they can sense the environment, understand the sensed data, take appropriate actions, and learn from this experience in order to enhance future performance. The field has evolved from early pattern recognition and image processing to advanced image understanding, including model-based and knowledge-based vision. This book shows how machine learning can help create robust, flexible vision techniques for optimal functioning in real-world scenarios.
1. Introduction
2. Learning as a Discipline
3. Basic Paradigms of Learning
4. Selection of Learning Paradigms and Designing Practical Learning Systems for Vision
5. Learning Applied to Low-Level Vision
6. Learning Applied to Intermediate-Level Vision
7. Learning Applied to High-Level Vision
8. Learning Integrated Multi-Level Vision
9. Learning Applied to Integrating Vision and Action
10. Applications
11. Summary
| Zusatzinfo | Approx. 505 p. |
|---|---|
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 152 x 229 mm |
| Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| ISBN-10 | 0-387-23703-8 / 0387237038 |
| ISBN-13 | 978-0-387-23703-9 / 9780387237039 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Methoden, Konzepte und Algorithmen in der Optotechnik, optischen …
Buch | Hardcover (2024)
Hanser (Verlag)
CHF 55,95