Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Machine Learning Approach to Detect Fraudulent Banking Transactions (eBook)

(Autor)

eBook Download: PDF
2022 | 1. Auflage
GRIN Verlag
978-3-346-72894-4 (ISBN)

Lese- und Medienproben

Machine Learning Approach to Detect Fraudulent Banking Transactions - Riwaj Kharel
Systemvoraussetzungen
29,99 inkl. MwSt
(CHF 29,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Master's Thesis from the year 2022 in the subject Computer Sciences - Artificial Intelligence, grade: 3, University of Applied Sciences Berlin, course: Project management and Data Science, language: English, abstract: The study investigates whether a machine learning algorithm can be used to detect fraud attempts and how a fraud management system based on machine learning might work. For fraud detection, most institutions rely on rule-based systems with manual evaluation. Until recently, these systems had been performing admirably. However, as fraudsters become more sophisticated, traditional systems' outcomes are becoming inconsistent.

Fraud usually comprises many methods that are used repeatedly that's why looking for patterns is a common emphasis for fraud detection. Data analysts can, for example, avoid insurance fraud by developing algorithms that recognize trends and abnormalities. AI techniques used to detect fraud include Data mining classifies, groups, and segments data to search through millions of transactions to find patterns and detect fraud.

The scientific paper discusses machine learning methods to detect fraud detection with a case study and analysis of Kaggle datasets.
Erscheint lt. Verlag 22.9.2022
Verlagsort München
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Banking fraud • fraud detection • machine learning
ISBN-10 3-346-72894-3 / 3346728943
ISBN-13 978-3-346-72894-4 / 9783346728944
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55