Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning (eBook)

, (Autoren)

eBook Download: PDF
2021
XXIII, 310 Seiten
Springer International Publishing (Verlag)
978-3-030-83356-5 (ISBN)

Lese- und Medienproben

Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning - Uday Kamath, John Liu
Systemvoraussetzungen
139,09 inkl. MwSt
(CHF 135,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students.       

--Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU


This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning.

--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU


This is a wonderful book! I'm pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I've seen that has up-to-date and well-rounded coverage. Thank you to the authors!

--Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics

 
Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge.  A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level.

Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist.

Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group



Uday Kamath has spent more than two decades developing analytics products in statistics, optimization, machine learning, NLP and speech recognition, and explainable AI. Uday has a Ph.D. in scalable machine learning and has contributed to many journals, conferences, and books in the field of AI. He is the author of books such as Deep Learning for NLP and Speech Recognition, Mastering Java Machine Learning, and Machine Learning: End-to-End Guide for Java Developers. He held many senior roles: Chief Analytics Officer for Digital Reasoning, Advisor for Falkonry, and Chief Data Scientist for BAE Systems Applied Intelligence. He has built products and solutions using AI in surveillance, compliance, cybersecurity, financial crime, anti-money laundering, and insurance fraud. Uday currently works as the Chief Analytics Officer for Smarsh. He is responsible for Data Science, research of analytics products employing deep learning and explainable AI, and modern techniques in speech and text used in the financial domain and healthcare.

John Chih Liu, PhD, CFA is Chief Executive Officer of Intelluron Corporation. Previously, he held senior executive roles overseeing quantitative research, portfolio management and data science organizations, including as VP of Data Science, Applied Machine Learning at Digital Reasoning Systems, MD of Equity Strategies at the Vanderbilt University endowment, and Head of Index Options Trading at BNP Paribas. He is a frequent speaker and published author on topics including natural language processing, reinforcement learning, asset allocation, systemic risk and EM theory. John was named Nashville's Data Scientist of the Year in 2016, Finalist for Community Leader of the Year in 2018, and Finalist for Innovator of the Year in 2020. He earned his B.S., M.S., and Ph.D. in electrical engineering from the University of Pennsylvania and is a CFA Charterholder, advocate for the global data science community and supporter of the International Science and Engineering Fair.
Erscheint lt. Verlag 15.12.2021
Zusatzinfo XXIII, 310 p. 194 illus., 161 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Deep Learning Methods • explainability • interpretability of models • Interpretable Machine Learning Models • intrinsic methods • model-agnostic methods
ISBN-10 3-030-83356-9 / 3030833569
ISBN-13 978-3-030-83356-5 / 9783030833565
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55