Artificial Intelligence Suitability. Assessment of Manufacturing-Execution-System Functions (eBook)
In order to cope the findings through the thesis work an inductive research approach has been applied. Existing literature in the fields of intelligent manufacturing, Manufacturing-Execution-Systems, machine learning, deep learning, intelligent manufacturing, digital twin, and assessment methodologies have been extensively studied in order to base the theoretical developed framework on grounded theory.
A case study was carried out in order to test the validity and reliability of the developed assessment framework for industry. The outcome of this thesis work was an assessment framework consisting of decisive criteria and related indicators when evaluating a MES function in respect to its AI suitability. Furthermore, an assessment checklist has been provided for the industry in order to be able to assess a MES function regards AI support in a quick and pragmatic manner. To generate a more generalizable assessment framework criteria and indicators have to be adapted, likewise testing the outcome of analogue and digital assessment methodologies will provide material for future studies.
Artificial Intelligence arises in the manufacturing field very rapidly. Implementing Artificial Intelligence (AI) solutions and algorithms in the manufacturing environment is a well-known research field in academia. On the other hand, Manufacturing-Execution-System (MES) providers do not have a theoretical and pragmatic framework regarding the evaluation of MES functions in respect to their suitability for Artificial Intelligence.
In order to be able to pre-evaluate whether a MES function shall be AI supported an intense literature research has been conducted. Academia shows few investigations regarding this field of research. Recent studies have been concerning about possible applications for MES functions in combination with AI. However, there is a lack of research in terms of pre-evaluating a MES function before embedding the function with AI support, since the development of AI solutions for MES functions without pre-evaluating those bears a waste of valuable resources.
| Erscheint lt. Verlag | 1.9.2020 |
|---|---|
| Verlagsort | München |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| Schlagworte | AI suitability • Artificial Intelligence • Assessment Framework • assessment methodologies • intelligent manufacturing • Manufacturing-Execution-System • MES |
| ISBN-10 | 3-346-23772-9 / 3346237729 |
| ISBN-13 | 978-3-346-23772-9 / 9783346237729 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich