Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning Risk Assessments in Criminal Justice Settings - Richard Berk

Machine Learning Risk Assessments in Criminal Justice Settings

(Autor)

Buch | Hardcover
IX, 178 Seiten
2018
Springer International Publishing (Verlag)
978-3-030-02271-6 (ISBN)
CHF 224,65 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book puts in one place and in accessible form Richard Berk's most recent work on forecasts of re-offending by individuals already in criminal justice custody. Using machine learning statistical procedures trained on very large datasets, an explicit introduction of the relative costs of forecasting errors as the forecasts are constructed, and an emphasis on maximizing forecasting accuracy, the author shows how his decades of research on the topic improves forecasts of risk.

 Criminal justice risk forecasts anticipate the future behavior of specified individuals, rather than "predictive policing" for locations in time and space, which is a very different enterprise that uses different data different data analysis tools.

 The audience for this book includes graduate students and researchers in the social sciences, and data analysts in criminal justice agencies. Formal mathematics is used only as necessary or in concert with more intuitive explanations.

Richard Berk is a Professor in the Department of Statistics and Department of Criminology at the University of Pennsylvania. He was previously a Distinguished Professor Statistics at UCLA. He has published 14 books and over 150 papers and book chapters on a wide range applied statistical issues, including many criminal justice applications.

1 Getting Started.- 2 Some Important Background Material.- 3 A Conceptual Introduction Classification and Forecasting.- 4 A More Formal Treatment of Classification and Forecasting.- 5 Tree-Based Forecasting Methods.- 6 Transparency, Accuracy and Fairness.- 7 Real Applications.- 8 Implementation.- 9 Some Concluding Observations About Actuarial Justice and More.

Erscheinungsdatum
Zusatzinfo IX, 178 p. 32 illus., 27 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 447 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte criminal justice • Deep learning • fair algorithms • Future Dangerousness • Gradient boosting • machine learning • Neural networks • Quantitative Criminology • random forests • risk assessment • risk forecasting
ISBN-10 3-030-02271-4 / 3030022714
ISBN-13 978-3-030-02271-6 / 9783030022716
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75