Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Conjecture and Proof - Miklos Laczkovich

Conjecture and Proof

Buch | Softcover
118 Seiten
2001
Mathematical Association of America (Verlag)
978-0-88385-722-9 (ISBN)
CHF 73,30 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The Budapest semesters in mathematics were initiated with the aim of offering undergraduate courses that convey the tradition of Hungarian mathematics to English-speaking students. This book is a version of the course on “Conjecture and Proof”. It gives miniature introductions to various areas of mathematics by presenting some interesting and important, but easily accessible results and methods.
The Budapest semesters in mathematics were initiated with the aim of offering undergraduate courses that convey the tradition of Hungarian mathematics to English-speaking students. This book is an elaborate version of the course on 'Conjecture and Proof'. It gives miniature introductions to various areas of mathematics by presenting some interesting and important, but easily accessible results and methods. The text contains complete proofs of deep results such as the transcendence of e, the Banach-Tarski paradox and the existence of Borel sets of arbitrary (finite) class. One of the purposes is to demonstrate how far one can get from the first principles in just a couple of steps. Prerequisites are kept to a minimum, and any introductory calculus course provides the necessary background for understanding the book. Exercises are included for the benefit of students. However, this book should prove fascinating for any mathematically literate reader.

Part I. Proofs of Impossibility, Proofs of Nonexistence: 1. Proofs of irrationality; 2. The elements of the theory of geometric constructions; 3. Constructible regular polygons; 4. Some basic facts on linear spaces and fields; 5. Algebraic and transcendental numbers; 6. Cauchy's functional equation; 7. Geometric decompositions; Part II. Constructions, Proofs of Existence: 8. The pigeonhole principle; 9. Liouville numbers; 10. Countable and uncountable sets; 11. Isometries of Rn; 12. The problem of invariant measures; 13. The Banach-Tarski paradox; 14. Open and closed sets in R. The Cantor set; 15. The Peano curve; 16. Borel sets; 17. The diagonal method.

Erscheint lt. Verlag 21.3.2002
Reihe/Serie Classroom Resource Materials
Sprache englisch
Maße 151 x 228 mm
Gewicht 182 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
ISBN-10 0-88385-722-7 / 0883857227
ISBN-13 978-0-88385-722-9 / 9780883857229
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

Buch | Hardcover (2023)
Carl Hanser (Verlag)
CHF 23,75