Strongly Coupled Parabolic and Elliptic Systems
Existence and Regularity of Strong and Weak Solutions
Seiten
Strongly coupled (or cross-diffusion) systems of parabolic and elliptic partial differential equations appear in many physical applications. This book presents a new approach to the solvability of general strongly coupled systems, a much more difficult problem in contrast to the scalar case, by unifying, elucidating and extending breakthrough results obtained by the author, and providing solutions to many open fundamental questions in the theory. Several examples in mathematical biology and ecology are also included. Contents Interpolation Gagliardo–Nirenberg inequalities The parabolic systems The elliptic systems Cross-diffusion systems of porous media type Nontrivial steady-state solutions The duality RBMO(μ)–H1(μ)| Some algebraic inequalities Partial regularity
Dung Le, University of Texas at San Antonio, USA.
| Erscheinungsdatum | 14.11.2018 |
|---|---|
| Reihe/Serie | De Gruyter Series in Nonlinear Analysis and Applications ; 28 |
| Verlagsort | Berlin/Boston |
| Sprache | englisch |
| Maße | 170 x 240 mm |
| Gewicht | 502 g |
| Themenwelt | Geisteswissenschaften ► Sprach- / Literaturwissenschaft ► Sprachwissenschaft |
| Schlagworte | Diffusion • Gekoppeltes System • Nichtlineare elliptische Differentialgleichung • Nichtlineare parabolische Differentialgleichung • System von partiellen Differentialgleichungen |
| ISBN-10 | 3-11-060715-8 / 3110607158 |
| ISBN-13 | 978-3-11-060715-4 / 9783110607154 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Wiederentdeckung
Buch | Softcover (2025)
Piper (Verlag)
CHF 19,55