

Contents

Preface to the first edition — V

Preface to the second edition — VII

List of symbols — XIII

About the authors — XIX

1 Heat of detonation — 1

- 1.1 Basic knowledge of the heat of detonation — 1
- 1.1.1 Measurement of the heat of explosion — 2
- 1.1.2 Heat of detonation and heat of formation — 3
- 1.1.3 Relationship between the heat of combustion and heat of formation — 5
- 1.2 The assumed detonation products — 6
- 1.2.1 Simple methods for the prediction of the detonation products — 6
- 1.2.2 Prediction of the detonation products on the basis of computer codes and using quantum mechanical calculations for the prediction of Q_{det} — 10
- 1.3 New empirical methods for the prediction of Q_{det} without considering the detonation products — 11
- 1.3.1 Using the gas and condensed phase heats of formation of explosives — 11
- 1.3.2 Using structural parameters of high explosives — 13
- 1.3.3 Prediction of the heat of explosion in double-base and composite modified double-base propellants — 15
- 1.4 Calculation of the heat of detonation (explosion) temperature of ideal and non-ideal energetic compounds — 17
- Summary — 20
- Questions and problems — 20

2 Detonation temperature — 23

- 2.1 Adiabatic combustion (flame) temperature — 23
- 2.1.1 Combustion of fuels with air — 23
- 2.1.2 Combustion of propellants — 25
- 2.2 Detonation (explosion) temperature for explosives — 26
- 2.2.1 Measurement of detonation temperature — 26
- 2.2.2 Calculation of detonation temperature — 28
- 2.2.3 Calculation of the detonation temperature of ideal and non-ideal energetic compounds — 33

Summary — 36

Questions and problems — 36

3 Detonation velocity — 37

- 3.1 Chapman-Jouguet (C-J) theory and detonation performance — 37
- 3.2 Ideal and nonideal explosives — 38
- 3.3 Measurement of the detonation velocity — 39
- 3.4 Prediction of the detonation velocity of ideal explosives — 41
 - 3.4.1 Detonation velocity as a function of the loading density, element composition, and the condensed phase heat of formation of pure and composite explosives — 42
 - 3.4.2 Detonation velocity as a function of the loading density, element composition, and the gas phase heat of formation of the pure component — 44
 - 3.4.3 Detonation velocity as a function of the loading density and molecular structures of high explosives — 44
 - 3.4.4 Maximum attainable detonation velocity — 45
 - 3.4.5 Comparison of empirical correlations with computer codes — 46
- 3.5 Estimation of the detonation velocity of nonideal explosives — 49
 - 3.5.1 Detonation velocity of ideal and nonideal explosives as a function of the loading density, element composition, and the condensed phase heat of formation of pure or composite explosives — 49
 - 3.5.2 Using molecular structure to predict the detonation velocity of ideal and nonideal explosives — 51
 - 3.5.3 Maximum attainable detonation velocity of $C_aH_bN_cO_dF_e$ and aluminized explosives — 52
- 3.6 Assessment of the detonation velocity of primary explosives — 53
 - Summary — 55
 - Questions and problems — 57

4 Detonation pressure — 59

- 4.1 Relationship between the detonation pressure and the detonation velocity — 59
- 4.2 Measurement of the detonation pressure — 61
- 4.3 Estimation of the detonation pressure of ideal explosives — 62
 - 4.3.1 Detonation pressure as a function of the loading density, element composition, and the condensed phase heat of formation of pure or composite explosives — 62
 - 4.3.2 Detonation pressure as a function of the loading density, element composition and gas phase heat of formation of the pure component — 64

4.3.3	Detonation pressure as a function of the loading density and molecular structure of high explosives — 64
4.3.4	Maximum attainable detonation pressure — 65
4.4	Prediction of the detonation pressure of nonideal aluminized explosives — 65
4.4.1	Using the elemental composition for predicting the detonation pressure of explosives — 66
4.4.2	Detonation pressure of $C_aH_bN_cO_dF_eCl_f$ and aluminized explosives as a function of the loading density, element composition, and the condensed phase heat of formation of pure or composite explosives — 67
4.4.3	Using molecular structure for predicting the detonation pressure of ideal and aluminized explosives — 68
4.4.4	Maximum attainable detonation pressure of $C_aH_bN_cO_dF_e$ explosives and aluminized explosives — 69
4.5	Application of laser techniques for assessment of the detonation performance — 70
4.5.1	The laser-induced air shock from energetic materials (LASEM) method — 71
4.5.2	Application of LASEM for composite energetic materials with metal additives — 72
4.5.3	Laser Induced Breakdown Spectroscopy (LIBS) — 74
4.6	Calculating the detonation pressure of ideal and non-ideal explosives containing Al and AN — 79
	Summary — 80
4.7	Questions and problems — 80
5	Gurney energy — 83
5.1	Gurney energy and Gurney velocity — 84
5.2	Gurney energy and the cylinder expansion test — 85
5.2.1	Cylinder test measurements — 85
5.2.2	Prediction methods of the cylinder test — 86
5.2.3	JWL equation of state — 88
5.3	Different methods for the prediction of the Gurney velocity — 88
5.3.1	Using the Kamlet–Jacobs decomposition products — 89
5.3.2	The use of elemental composition and the heat of formation — 89
5.3.3	The use of elemental composition without using the heat of formation of an explosive — 90
5.4	Combined effects aluminized explosives — 91
5.5	Assessment of the Gurney velocity of aluminized and nonaluminized explosives — 92
5.5.1	Using the BKW thermochemical code — 92

5.5.2	Detonation pressure and the specific impulse — 93
5.5.3	The Gurney velocity based on the heat of combustion — 94
	Summary — 95
	Questions and problems — 96
6	Power (strength) — 97
6.1	Different methods for measuring the power and brisance of an explosive — 97
6.2	Different methods for the prediction of power — 100
6.2.1	A simple correlation for the prediction of the volume of explosion gases of energetic compounds — 101
6.2.2	Power index — 101
6.2.3	Simple correlations for the prediction of power on the basis of the Trauzl lead block and the ballistic mortar tests — 102
6.3	Prediction of brisance — 106
6.3.1	Sand crushing test — 107
6.3.2	Plate dent test — 108
	Summary — 111
	Questions and problems — 112
7	Underwater detonation (explosion) — 113
7.1	Measurement of shock wave energy and bubble energy — 113
7.2	Assessment of the performance in the underwater explosion — 116
	Summary — 118
	Questions and problems — 118
Answers to questions and problems — 119	
	Chapter 1 — 119
	Chapter 2 — 119
	Chapter 3 — 120
	Chapter 4 — 120
	Chapter 5 — 120
	Chapter 6 — 120
	Chapter 7 — 121
Appendix: Glossary of compound names and heats of formation for pure and composite explosives — 121	
Bibliography — 131	
Index — 143	