Contents

Preface	VII	
Softwa	re —— IX	
Acknowledgment —— XI Support —— XIII		
1.1	Examples of the effects of roundoff error —— 1	
1.2	Binary numbers —— 4	
1.3	64 bit floating-point numbers —— 6	
1.3.1	Adding large and small numbers is bad —— 8	
1.3.2	Subtracting two nearly equal numbers is bad —— 8	
1.4	Exercises —— 10	
2	Solving linear systems of equations —— 13	
2.1	Solving triangular linear systems —— 13	
2.2	From Gaussian elimination to LU factorization —— 15	
2.3	Pivoting —— 18	
2.3.1	Work in LU/GE —— 23	
2.4	Direct methods for large sparse linear systems —— 23	
2.5	Conjugate gradient —— 26	
2.6	Preconditioning and ILU —— 28	
2.7	Accuracy in solving linear systems —— 30	
2.7.1	Matrix and vector norms and condition number —— 31	
2.7.2	Condition number of a matrix —— 33	
2.7.3	Sensitivity in linear system solving —— 34	
2.7.4	Error and residual in linear system solving —— 36	
2.8	Exercises —— 37	
3	Least squares problems —— 41	
3.1	Solving LSQ problems with the normal equations —— 42	
3.2	QR factorization and the Gram-Schmidt process —— 44	
3.3	Curve of best fit —— 48	
3.4	Exercises —— 51	
4	Finite difference methods —— 53	

Convergence terminology —— 53

4.1

4.2	Approximating the first derivative —— 55
4.2.1	Forward and backward differences —— 55
4.2.2	Centered difference —— 58
4.2.3	Three point difference formulas —— 60
4.2.4	Further notes —— 62
4.3	Approximating the second derivative —— 62
4.4	Application: Initial value ODEs using the forward Euler method —— 63
4.5	Application: Boundary value ODEs —— 65
4.6	Exercises —— 69
5	Solving nonlinear equations —— 71
5.1	Convergence criteria of iterative methods for nonlinear systems —— 71
5.2	The bisection method —— 72
5.3	Fixed-point theory and algorithms —— 77
5.4	Newton's method —— 82
5.5	Secant method —— 86
5.6	Comparing bisection, Newton, Secant method —— 86
5.7	Combining secant and bisection and the fzero command —— 87
5.8	Equation solving in higher dimensions —— 87
5.9	Exercises —— 90
6	Eigenvalues and eigenvectors —— 93
6.1	Theoretical background —— 93
6.2	Single-vector iterations —— 94
6.3	Multiple-vector iterations —— 101
6.4	Finding all eigenvalues and eigenvectors of a matrix —— 103
6.5	Exercises —— 103
7	Interpolation —— 105
7.1	Interpolation by a single polynomial —— 105
7.1.1	Lagrange interpolation —— 107
7.2	Chebyshev interpolation —— 110
7.3	Piecewise linear interpolation —— 113
7.4	Piecewise cubic interpolation (cubic spline) —— 116
7.5	Exercises —— 119
8	Numerical integration —— 121
8.1	Preliminaries —— 121
8.2	Newton-Cotes rules —— 124
8.3	Composite rules —— 127
	•
8.4 8.5	Clenshaw–Curtis quadrature —— 130

8.6	MATLAB's integral function —— 138
8.7	Exercise —— 139
9	Initial value problems —— 141
9.1	Reduction of higher order IVPs to first order —— 142
9.2	The forward Euler method —— 143
9.3	Heun's method and RK4 —— 146
9.4	Stiff problems and numerical stability —— 147
9.4.1	Implicit methods and unconditional stability —— 149
9.5	Summary, general strategy, and MATLAB ODE solvers —— 150
9.6	Fitting ODE parameters to data —— 152
9.7	Exercises —— 155
10	Partial differential equations —— 159
10.1	The 1D heat equation —— 159
10.1.1	A maximum principle and numerical stability —— 166
10.2	The 2D Poisson equation —— 168
10.3	Exercises —— 172

Index —— 173