Contents

Preface — v

1	General introduction —— 1
1.1	General classes of formulations —— 1
1.2	Classification of disperse systems —— 2
1.3	The interfacial region —— 4
1.4	Solid dosage forms —— 6
1.5	Semi-solid formulations —— 6
1.6	Outline of the book —— 7
2	Classification of surfactants, their solution properties
	and self-assembly structures —— 59
2.1	Introduction —— 59
2.2	Classification of surfactants —— 59
2.2.1	Anionic surfactants —— 60
2.2.2	Cationic surfactants —— 63
2.2.3	Amphoteric (zwitterionic) surfactants —— 65
2.2.4	Nonionic surfactants —— 66
2.2.5	Speciality surfactants. Fluorocarbon and silicone surfactants — 70
2.2.6	Gemini surfactants —— 71
2.2.7	Surfactants derived from mono- and polysaccharides —— 71
2.2.8	Naturally occurring surfactants — 72
2.2.9	Biosurfactants — 76
2.3	Aggregation of surfactants, self-assembly structures,
	liquid crystalline phases —— 79
2.3.1	Physical properties of surfactant solutions —— 79
2.3.2	Thermodynamics of micellization —— 85
2.4	Surfactant self-assembly —— 95
2.4.1	Structure of liquid crystalline phases —— 95
2.5	Experimental studies of the phase behaviour of surfactants —— 97
3	General classification of polymeric surfactants
	and their solution properties —— 101
3.1	Introduction —— 101
3.2	Classification of polymeric surfactants —— 101
3.2.1	Homopolymers —— 101
3.2.2	Random copolymers —— 102
3.2.3	Block and graft copolymers —— 102
3.2.4	Polymeric surfactants based on polysaccharides —— 104

3.2.5	Natural polymeric biosurfactants —— 108
3.2.6	Silicone surfactants —— 109
3.2.7	Polymeric surfactants for nonaqueous dispersions —— 110
3.2.8	Polymerizable surfactants —— 112
3.3	Solution properties of polymeric surfactants —— 113
3.3.1	Polymer conformation and structure —— 113
3.3.2	Free energy of mixing of polymer with solvent –
	the Flory–Huggins theory —— 115
3.4	Characterization of polymers in solution —— 119
3.4.1	Scattering techniques —— 119
3.5	Phase separation of polymer solutions —— 124
3.6	Solubility parameter concept for selecting the right solvent
	for a polymer —— 125
4	Adsorption of surfactants at the liquid/liquid interface —— 127
4.1	Introduction —— 127
4.2	The interface (Gibbs dividing line) —— 128
4.3	General treatment of surfactant adsorption —— 129
4.3.1	The Gibbs adsorption isotherm —— 129
4.3.2	Equation of state approach —— 133
4.3.3	The Langmuir, Szyszkowski and Frumkin equations —— 134
4.3.4	Effectiveness of surfactant adsorption
	at the liquid/liquid interface —— 135
4.3.5	Efficiency of adsorption of surfactant
	at the liquid/liquid interface —— 135
4.3.6	Adsorption from mixtures of two surfactants —— 137
4.3.7	Adsorption of Macromolecules —— 138
4.4	Interfacial tension measurements —— 140
4.4.1	The Wilhelmy plate method —— 140
4.4.2	The pendent drop method —— 141
4.4.3	Sessile drop method —— 142
4.4.4	The du Noüy ring method —— 143
4.4.5	The drop volume (weight) method —— 143
4.4.6	The spinning drop method —— 144
5	Surfactant adsorption at the solid/liquid interface —— 147
5.1	Introduction —— 147
5.2	Adsorption of ionic surfactants on hydrophobic surfaces —— 149
5.3	Examples of adsorption isotherms for ionic surfactants
	on hydrophobic surfaces —— 153
5.4	Adsorption of ionic surfactants on polar surfaces —— 155
5.5	Adsorption of nonionic surfactants —— 156

5.6	Theoretical treatment of surfactant adsorption —— 159
5.7	Examples of typical adsorption isotherms of model nonionic surfactants
	on hydrophobic solids —— 161
6	Adsorption and conformation of polymeric surfactants at interfaces —— 167
6.1	Introduction —— 167
6.2	Polymers at interfaces —— 168
6.3	Theories of polymer adsorption —— 172
6.4	Scaling theory for polymer adsorption —— 180
6.5	Experimental techniques for studying polymeric
	surfactant adsorption —— 182
6.5.1	Measurement of the adsorption isotherm —— 183
6.5.2	Measurement of the fraction of segments p — 183
6.5.3	Determination of the segment density distribution $ ho(z)$
	and adsorbed layer thickness δ_{h} —— 184
6.5.4	Examples of the adsorption isotherms of nonionic
	polymeric surfactants —— 187
6.5.5	Adsorbed layer thickness results —— 191
6.6	Kinetics of polymer adsorption —— 193
7	Electrostatic stabilization of dispersions —— 197
7.1	Introduction —— 197
7.2	Distribution of charge and potential at the interface and structure
	of the electrical double layer —— 197
7.3	Electrical double layer repulsion —— 201
7.4	Van der Waals attraction —— 209
7.5	Total energy of interaction —— 217
7.5.1	Deryaguin-Landau-Verwey-Overbeek (DLVO) theory —— 217
7.6	Criteria for stabilization of suspensions or emulsions
	with double layer interaction —— 218
8	Interaction between particles or droplets containing adsorbed
	polymer layers and the theory of steric stabilization —— 221
8.1	Introduction —— 221
8.2	Interaction between particles or droplets
	containing adsorbed polymer layers —— 222
8.2.1	Mixing interaction G_{mix} —— 223
8.2.2	Elastic interaction G_{el} —— 224
8.2.3	Total energy of interaction —— 225
8.2.4	Criteria for effective steric stabilization —— 226
8.3	Emulsions stabilized by polymeric surfactants —— 227

8.4	Suspensions stabilized using polymeric surfactants —— 231
8.4.1	Polymeric surfactants in emulsion polymerization —— 232
8.4.2	Dispersion polymerization —— 238
8.4.3	Polymeric surfactants for stabilization of preformed latex dispersions —— 239
8.4.4	Interaction forces between adsorbed layers of PMMA/MA(PEO) _n graft copolymer —— 242
8.5	Use of polymeric surfactants for preparation and stabilization of nanoemulsions —— 245
9	Flocculation of dispersions —— 253
9.1	Introduction —— 253
9.2	Mechanism of aggregation of electrostatically
	stabilized dispersions —— 254
9.3	Kinetics of flocculation of dispersions —— 256
9.3.1	Diffusion limited aggregation (fast flocculation kinetics) —— 256
9.3.2	Potential limited aggregation (slow flocculation kinetics) —— 257
9.3.3	Weak (reversible) flocculation —— 259
9.3.4	Orthokinetic flocculation —— 259
9.3.5	Aggregate structure —— 263
9.4	Flocculation of sterically stabilized dispersions —— 264
9.4.1	Weak flocculation —— 264
9.4.2	Incipient flocculation —— 264
9.4.3	Depletion flocculation —— 267
9.4.4	Bridging flocculation by polymers and polyelectrolytes —— 268
10	Ostwald ripening in dispersions and its prevention —— 273
10.1	Introduction —— 273
10.2	Driving force for Ostwald ripening —— 274
10.3	Kinetics of Ostwald ripening —— 275
10.4	Reduction of Ostwald ripening in emulsions —— 279
10.4.1	Addition of a small proportion of highly insoluble oil —— 279
10.4.2	Modification of the interfacial layer for reducing
	Ostwald ripening —— 281
10.4.3	Influence of initial droplet size of emulsions on the Ostwald
10 5	ripening rate —— 282 Thermodynamic theory of crystal growth 283
10.5	Thermodynamic theory of crystal growth —— 283
10.6	Molecular-kinetic theory of crystal growth — 285
10.7	The influence of dislocations on crystal growth —— 286
10.8	Influence of impurities on crystal growth and habit —— 287
10.9	Polymorphic changes —— 288 Crystal growth inhibition —— 289
10.10	CIVSIAI PROWIN INNIDITION 289

11	Emulsion coalescence and its prevention —— 293
11.1	Introduction —— 293
11.2	Forces across liquid films —— 294
11.2.1	Disjoining pressure approach —— 295
11.2.2	Interfacial tension of liquid films —— 296
11.3	Film rupture —— 297
11.4	Rate of coalescence between droplets —— 298
11.5	Reduction of coalescence —— 304
11.5.1	Use of mixed surfactant films —— 304
12	Phase inversion and its prevention —— 313
12.1	Introduction —— 313
12.2	Catastrophic inversion —— 313
12.3	Transitional inversion —— 316
12.4	The phase inversion temperature (PIT) —— 318
13	Sedimentation of suspensions, creaming of emulsions
	and their prevention —— 325
13.1	Introduction —— 325
13.2	Sedimentation rate of suspensions and creaming rate
	of emulsions —— 327
13.3	Sedimentation or creaming in non-Newtonian fluids —— 329
13.4	Prevention of sedimentation and creaming —— 333
13.4.1	Balance of the density of the disperse phase and medium —— 333
13.4.2	Reduction of particle or droplet size —— 333
13.4.3	Use of high molecular weight thickeners —— 333
13.4.4	Reduction of creaming/sedimentation by using
	associative thickeners —— 335
13.4.5	Controlled flocculation —— 338
13.4.6	Depletion flocculation —— 343
13.4.7	Use of "inert" fine particles — 347
13.4.8	Use of mixtures of polymers and finely divided particulate solids —— 350
13.4.9	Use of liquid crystalline phases —— 350
14	Flow characteristics (rheology) of formulations —— 353
14.1	Introduction —— 353
14.2	Rheological techniques —— 354
14.2.1	Steady state shear stress σ -shear rate γ measurements — 354
14.2.2	Rheological models for analysis of flow curves —— 356
14.2.3	Time effects during flow – thixotropy and negative
	(or anti-)thixotropy —— 358

xii	 Car	itents
AII	 COL	nems

14.2.4	Strain relaxation after sudden application of stress –
	constant stress (creep) measurements —— 360
14.2.5	Stress relaxation after sudden application of strain —— 363
14.2.6	Dynamic (oscillatory) measurements —— 365
14.3	Rheology of dispersions —— 370
14.3.1	The Einstein equation —— 370
14.3.2	The Bachelor equation —— 371
14.3.3	Rheology of concentrated dispersions —— 371
14.4	Examples of strongly flocculated (coagulated) suspension —— 387
14.4.1	Coagulation of electrostatically stabilized suspensions
	by addition of electrolyte —— 387
14.4.2	Strongly flocculated sterically stabilized systems —— 389
14.4.3	Models for interpreting rheological results —— 393
14.5	Using rheological measurements to assess and predict the long-term
	physical stability of formulations —— 396
14.5.1	Assessment of creaming and sedimentation — 396
14.5.2	Accelerated tests and their limitations —— 396
14.5.3	Rheological techniques for predicting sedimentation
	or creaming —— 398
14.5.4	Examples of correlation of sedimentation or creaming
	with residual (zero shear) viscosity —— 399
14.5.5	Assessing and predicting flocculation
	using rheological techniques —— 404
14.5.6	Examples of applications of rheology to assessing
	and predicting flocculation —— 408
14.5.7	Assessing and predicting emulsion coalescence
	using rheological techniques —— 411

Index —— 417