Contents

P	ref	ace	 ١	/1	ı

List of Important Abbreviations and Symbols --- XIII

List of Numbered Chemical Structures ---- XV

Chapter 1

Introduction — 1

- 1.1 Supramolecular chemistry 2
- 1.2 Host-guest inclusion complexation in solution 5 References 11

Chapter 2

Historical aspects ---- 15

- 2.1 Early examples of host-guest inclusion compounds 17
- 2.2 History of the development of major families of hosts 18
- 2.3 Proliferation of host-guest inclusion research 23
- 2.4 Current state of solution-phase host-guest inclusion

chemistry — 25

References — 26

Chapter 3

Driving forces, thermodynamics, and kinetics of inclusion in aqueous solution —— 31

- 3.1 Preparation, self-assembly, and mechanisms of inclusion complexation in aqueous solution —— 32
- 3.2 Driving forces for inclusion in aqueous solution 40
- 3.2.1 Intermolecular forces between host and guest 41
- 3.2.2 Expulsion of water molecules from the host cavity —— 44
- 3.2.3 The hydrophobic effect in aqueous solution 45
- 3.2.4 Summary of driving forces for host inclusion in aqueous solution —— 47
- 3.3 Thermodynamics of inclusion in solution —— 47
- 3.4 Dynamics of inclusion in solution 51
- 3.5 Host selectivity and modes of inclusion in solution —— 53

References ---- 55

Chapter 4				
•	nic methods for studying best sweet inclusion in colution (4)			
	pic methods for studying host-guest inclusion in solution —— 61			
4.1	Quantum mechanics and molecular energy levels — 63			
4.2	The nature of light and its interaction with molecules — 67			
4.3	Infrared absorption spectroscopy —— 70			
4.4	UV-vis absorption spectroscopy —— 72			
4.5	Fluorescence spectroscopy — 77			
4.5.1	Steady-state fluorescence spectroscopy —— 87			
4.5.2	Time-resolved fluorescence spectroscopy —— 94			
4.6	Phosphorescence spectroscopy —— 99			
4.7	NMR spectroscopy —— 100			
4.8	Other spectroscopic methods and conclusion —— 105			
	References —— 107			
Chapter 5				
Other exper	rimental methods for studying host-guest inclusion			
in solution -	 113			
5.1	Electrochemical methods —— 113			
5.2	Calorimetric and other thermal methods —— 116			
5.3	Chromatographic methods —— 119			
5.4	Mass spectrometry methods —— 123			
5.5	Diffraction techniques —— 125			
5.6	Other miscellaneous methods —— 130			
	References —— 130			
Chapter 6				
•	f binding constants from experimental data —— 135			
6.1	Extraction of binding constants from experimental titration data			
0.1	for 1:1 host:guest complexes — 136			
6.1.1	Benesi-Hildebrand analysis —— 137			
6.1.1.1	Modifications of the Benesi-Hildebrand method for applications			
0.1.1.1	to other types of experimental data —— 138			
6.1.1.2	Accuracy and limitations of the Benesi-Hildebrand method —— 139			
6.1.2	Nonlinear least-squares analysis of fluorescence titration			
0.1.2	data — 140			
6.2	Experimental determination of host:guest complex			
0.2	stoichiometry —— 143			
6.3	Extraction of binding constants from experimental data for higher			
ر.ں	order host:guest complexes —— 144			
<i>6 </i>	Error analysis and reproducibility of binding constants extracted			
6.4	from experimental titration data —— 146			
	nom experimental infation data 140			

6.5	References — 148			
Chapter 7				
	rins as hosts —— 151			
7.1	Introduction to cyclodextrins —— 151			
7.2	Physicochemical properties of cyclodextrins —— 153			
7.3	Modified cyclodextrins —— 156			
7.3.1	Substitution at the primary hydroxyls —— 158			
7.3.2	Substitution at the secondary hydroxyls —— 158			
7.3.3	Specific examples of modified cyclodextrins used as molecular			
	hosts —— 159			
7.3.4	Monosubstitution of tethered active moieties — 161			
7.4	Host properties of native and modified CDs in aqueous			
	solution —— 163			
7.5	Polymers containing CD host moieties —— 171			
7.6	Summary of CDs as molecular hosts —— 173			
	References —— 173			
Chapter 8				
•	n]urils as hosts —— 177			
8.1	Introduction to cucurbit[n]urils — 177			
8.2	Synthesis of cucurbit[n]urils — 178			
8.3	Physicochemical properties of cucurbit[n]urils — 182			
8.4	Cucurbit[n]urils as molecular hosts in aqueous solution —— 184			
8.4.1	Cucurbituril (cucurbit[6]uril) as host — 187			
8.4.2	Cucurbit[7]uril as host — 192			
8.4.3	Cucurbit[n]urils, $n \ge 8$ as hosts —— 196			
8.5	A Comparison of the aqueous host binding properties			
	of cucurbit[n]urils and CDs — 198			
8.6	Cucurbit[n]uril derivatives and analogues as hosts in aqueous			
	solution —— 200			
8.7	Cucurbit[n]urils as molecular beads in rotaxanes and building			
	blocks for nanodevices —— 203			
8.8	Summary of cucurbit $[n]$ urils as molecular hosts — 204			
	References —— 205			
Chapter 9				
•	lecular hosts in aqueous solution —— 209			
9.1	Calix[n]arenes —— 209			
9.2	Cavitands — 213			
9.3	Cryptands —— 215			
	VI			

XII — Contents				
Cryptophanes —— 216				
Carcerands and hemicarcerands — 217				
Dendrimers —— 218				
Pillar[n]arenes —— 221				
Bambus[n]urils —— 222				
Cyclophanes —— 223				
Other miscellaneous molecular hosts —— 225				
References —— 226				
•				
st inclusion in mixed aqueous and nonaqueous solution —— 231				
Introduction — 231				
Host-guest inclusion in mixed aqueous-organic solution — 232				
Host-guest inclusion in pure nonaqueous solution — 234				
Cyclodextrin inclusion complexes in nonaqueous solution — 235				
Inclusion complexes of other hosts in nonaqueous solution —— 237 Conclusions —— 238				
References — 238				
References —— 238				
1				
ons of host–guest inclusion in solution —— 241				
Analytical applications — 241				
Molecular sensors and molecular recognition — 244				
Control of guest reactivity —— 248				
Medicinal and pharmaceutical applications — 249				
Water treatment and environmental remediation —— 252				
Industrial applications —— 254				
Other applications and summary —— 255				
References —— 256				

Chapter 12

Index ---- 267

Conclusions and summary —— 261

References — 265