Contents

Preface — ix

Preface to the second edition ---- xv

1	Equations of fluid motion —— 1
1.1	Basic hypotheses of continuum —— 1
1.2	Two methods for the continuum description. Translation formula ——
1.3	Integral conservation laws. Equations of continuous motion —— 7
1.4	Thermodynamics aspects —— 13
1.5	Classical models of liquids and gases —— 16
2	Conditions on the interface between fluids and on solid walls —— 25
2.1	Notion of the interface —— 25
2.2	Kinematic condition —— 26
2.3	Dynamic condition —— 26
2.4	Elements of thermodynamics of the interface —— 32
2.5	Conditions of continuity —— 34
2.6	Energy transfer across the interface —— 36
2.7	Free surfaces —— 40
2.8	Additional conditions —— 42
3	Models of convection of an isothermally incompressible fluid —— 45
3.1	Isothermally incompressible fluid —— 45
3.2	Equations of thermal convection of an isothermally incompressible fluid —— 47
3.3	Model of linear thermal expansion —— 48
3.4	Some submodels —— 50
3.5	On boundary conditions —— 51
3.6	Two problems of convection —— 53
4	Hierarchy of convection models in closed volumes —— 61
4.1	Initial relations —— 61
4.2	Similarity criteria —— 63
4.3	Transition to dimensional variables —— 65
4.4	Expansion in the small parameter —— 68
4.5	Equations of microconvection of an isothermally incompressible
	fluid 71
4.6	Oberbeck-Boussinesq equations — 74
4.7	Linear model of the transitional process —— 75
4.8	Some conclusions —— 78

4.9	Convection of nonisothermal liquids and gases under microgravity conditions —— 81
4.10	Convection of a thermally inhomogeneous weakly compressible fluid —— 88
4.11	Exact solutions in an infinite band —— 92
4.12	Analysis of well-posedness of the initial-boundary problem for equations of convection of a weakly compressible fluid —— 104
	equations of convection of a weakly compressible hala
5	Invariant submodels of microconvection equations —— 113
5.1	Basic model and its group properties —— 113
5.2	Optimal subsystems of the subalgebras Θ_1 and Θ_2 , factor-systems, and some solutions —— 116
5.3	On one steady solution of microconvection equations in a vertical layer —— 124
5.4	Solvability of a nonstandard boundary-value problem —— 134
5.5	Unsteady solution of microconvection equations in an infinite band —— 140
5.6	Invariant solutions of microconvection equations that describe the motion with an interface —— 147
6	Group properties of equations of thermodiffusion motion —— 153
6.1	Lie group of thermodiffusion equations —— 153
6.2	Group properties of two-dimensional equations —— 169
6.3	Invariant submodels and exact solutions of thermodiffusion equations —— 174
7	Stability of equilibrium states in the Oberbeck-Boussinesq model —— 193
7.1	Convective instability of a horizontal layer with oscillations of
,	temperature on the free boundary —— 193
7.2	Instability of a liquid layers with an interface —— 201
7.3	Convection in a rotating fluid layer under microgravity conditions —— 211
8	Small perturbations and stability of plane layers in the microconvection model —— 221
8.1	Equations of small perturbations —— 221
8.2	Stability of the equilibrium state of a plane layer with solid walls —— 225
8.3	Emergence of microconvection in a plane layer with a free boundary —— 235
8.4	Stability of a steady flow in a vertical layer —— 245

9	Numerical simulation of convective flows under microgravity conditions —— 257
9.1	Numerical methods used for calculations —— 257
9.2	Numerical study of unsteady microconvection in canonical domains with solid boundaries —— 268
9.3	Numerical study of steady microconvection in domains with free
	boundaries —— 284
9.4	Study of convection induced by volume expansion —— 300
9.5	Convection in miscible fluids —— 320
10	Convective flows in tubes and layers —— 341
10.1	Group-theoretical nature of the Birikh solution and its
	generalizations —— 341
10.2	An axial convective flow in a rotating tube with a longitudinal
	temperature gradient —— 349
10.3	Unsteady analogs of the Birikh solutions —— 357
10.3.1	Introduction —— 357
10.3.2	Plane motion in a horizontal band —— 358
10.3.3	Layered motion of immiscible fluids —— 361
10.3.4	Unsteady axial convection in a rotating tube —— 363
10.3.5	Motion of immiscible fluids in a rotating tube —— 364
10.3.6	Three-dimensional analogs of the Birikh solution —— 366
10.3.7	On the Ostroumov solutions —— 369
10.3.8	Concluding remarks —— 370
10.4	Model of viscous layer deformation by thermocapillary forces —— 371
10.5	Convective flow in a horizontal channel with non-Newtonian surface
	rheology under time-dependent longitudinal temperature
	gradient 394
10.5.1	Formulation of the problem —— 394
10.5.2	Limiting steady flow —— 397
10.5.3	Unsteady convection —— 398
Ribling	ranhy 401

Bibliography —— 40

Index —— 413