Contents

Preface ---- V

Notation	X	ı	ı	ı	
----------	---	---	---	---	--

1	Preliminaries — 1
1.1	Sobolev spaces —— 1
1.2	Maximum principles —— 14
1.2.1	Weak maximum principle —— 15
1.2.2	Strong maximum principle —— 20
1.3	Compact self-adjoint operators —— 23
1.4	Eigenvalues of elliptic problems —— 29
1.5	Systems of elliptic equations —— 43
1.5.1	Spectral theory for symmetric systems —— 47
1.5.2	Weak maximum principle for cooperative systems —— 52
1.5.3	Comparison principles for semilinear elliptic systems —— 55
2	Introduction to Morse theory —— 59
2.1	Morse theory on finite dimensional manifolds —— 59
2.1.1	Introduction —— 59
2.1.2	Morse lemma and deformation theorems —— 62
2.1.3	Morse inequalities —— 68
2.2	Infinite dimensional Morse theory —— 73
2.2.1	Critical groups and Morse lemma —— 73
2.2.2	Morse inequalities —— 76
2.2.3	Morse index of mountain pass critical points —— 78
3	Morse theory for semilinear elliptic equations —— 83
3.1	Introduction —— 83
3.2	Positive solutions of Dirichlet problems —— 86
3.2.1	Existence of a positive solution by the mountain pass theorem —— 8
3.2.2	Existence of a positive solution by constrained minimization —— 89
3.2.3	Uniqueness of solutions of Morse index one of Lane-Emden problems —— 91
2 2	•
3.3	Sign changing solutions of Dirichlet problems —— 97
3.3.1	Existence of a solution with Morse index two by constrained minimization —— 97
3.3.2	Estimates of Morse index for symmetric sign changing solutions: the
J.J.L	autonomous case —— 104

3.3.3	Estimates of Morse index for symmetric sign changing solutions: the nonautonomous case —— 110
4	Morse index of radial solutions of Lane-Emden problems —— 121
4.1	Spectral decomposition for the linearized operator at a radial solution —— 121
4.2	Asymptotic analysis of radial solutions —— 128
4.2.1	The case $N \ge 3$ —— 128
4.2.2	The case <i>N</i> = 2 —— 132
4.3	Computation of the Morse index of radial solutions in dimension
	<i>N</i> ≥ 3 — 136
4.4	Computation of the Morse index in dimension $N = 2 - 143$
4.5	A weighted eigenvalue problem in \mathbb{R}^N —— 147
5	Bifurcation from radial solutions —— 155
5.1	Preliminaries —— 155
5.2	Bifurcation with respect to the exponent p —— 158
5.2.1	Asymptotic analysis of the radial solution —— 158
5.2.2	Asymptotic behavior of the radial eigenvalue $ ilde{eta}_1(p)$ —— 160
5.2.3	Bifurcation results —— 165
5.3	Bifurcation with respect to the radius of the annulus —— 167
5.3.1	Asymptotic estimates for the radial solution —— 167
5.3.2	Asymptotic analysis of the eigenvalue $ ilde{oldsymbol{eta}}_1(R)$ —— 171
5.3.3	Bifurcation results —— 175
6	Morse index and symmetry for semilinear elliptic equations in bounded
	domains 177
6.1	Symmetry and monotonicity of positive solutions —— 177
6.1.1	Moving planes and symmetry —— 177
6.1.2	Monotonicity by the method of moving planes —— 182
6.1.3	Counterexamples to radial symmetry —— 184
6.2	Foliated Schwarz symmetry and related properties —— 186
6.3	Foliated Schwarz symmetry of low Morse index solutions of elliptic
	Dirichlet problems —— 196
6.3.1	Convex nonlinearities —— 196
6.3.2	Nonlinearities with a convex derivative —— 199
6.4	Symmetry of solutions of mixed boundary value problems —— 205
7	Morse index and symmetry for elliptic systems in bounded domains —— 21
7.1	Morse index of solutions of elliptic systems —— 213
7.2	Symmetry results —— 215
7 2 1	Moving and rotating planes —— 215

7.2.2	Foliated Schwarz symmetry —— 217			
7.2.3	Nonlinearities having convex components —— 219			
7.2.4	Nonlinearities with convex derivatives —— 224			
7.3	Examples —— 229			
8	Some results in unbounded domains —— 235			
8.1	Moving planes and symmetry in unbounded domains —— 235			
8.2	Foliated Schwarz symmetry —— 239			
8.3	Nonexistence and classification results —— 242			
Bibliography —— 245				
Index	 255			