

Contents

Preface — V

1	Water chemistry fundamentals — 1
1.1	Introduction — 1
1.2	Solutions — 1
1.3	The chemical structure of the H_2O molecule — 1
1.4	Dissolution — 2
1.5	Solubility — 2
1.6	Electrolytes and non-electrolytes — 3
1.7	Expressing solute concentrations in environmental engineering — 4
1.8	Weight fraction (mass per unit mass) — 5
1.9	Weight per volume — 5
1.10	Molarity (M) — 6
1.11	Normality (N = eq/L) — 6
1.12	Weight per volume expressed as a different substance (units: g/L as X) — 8
1.13	The p-notation — 10
1.14	Chemical equilibrium — 11
1.15	The kinetic approach for describing chemical equilibrium — 11
1.16	Adjusting the equilibrium constant to a non-ideal system — 13
1.17	Acid–base equilibrium in the aqueous phase — 16
1.18	The thermodynamic approach for describing chemical equilibrium — 19
1.19	Standard free energy of formation — 21
1.20	Determining ΔG under non-standard conditions — 22
1.21	Temperature effect on the equilibrium constant value — 24
2	Acids and bases — 27
2.1	Introduction — 27
2.2	Basic principles — 27
2.2.1	Defining acids and bases — 27
2.3	Acid-base pairs — 29
2.4	Polyprotic acids — 30
2.5	The carbonate system — 30
2.6	The strength of an acid or base — 32
2.7	The Henderson–Hasselbalch equation — 36
2.8	Species distribution of weak-acids/bases as a function of pH — 38
2.8.1	Species concentration as a function of pH – the graphical approach — 42

2.8.2	Sketching the log (species) curve as a function of pH – a quick procedure — 46
2.8.3	Sketching the log (species) curve as a function of pH – important points — 47
2.9	The effect of a change in the total species concentration, C_T — 48
2.10	Interpreting acid/base systems using proton balance equations — 48
2.11	Equivalent solutions and equivalence points — 54
2.11.1	H_2A_{EP} – the equivalence point of H_2A — 55
2.11.2	HA^-_{EP} – The equivalence point of HA^- — 57
2.11.3	A^{-2}_{EP} – the equivalence point of A^{-2} — 59
2.12	Buffer capacity — 62
2.13	Graphical method for solving problems — 63

3 Alkalinity and acidity as tools for quantifying acid-base equilibrium and designing water and wastewater treatment processes — 67

3.1	Introduction — 67
3.2	Alkalinity and acidity – definitions — 67
3.2.1	First verbal definition — 68
3.2.2	Second verbal definition — 68
3.3	Development of alkalinity and acidity equations for monoprotic, weak-acid (weak-base) systems — 70
3.3.1	Developing an equation for the alkalinity of a monoprotic, weak acid with HA as the reference species — 70
3.3.2	Deriving an equation for the acidity of a monoprotic, weak acid with A^- as the reference species — 72
3.3.3	Generalization and elaboration of the concepts alkalinity and acidity and the relationships between them for a monoprotic weak acid — 73
3.3.4	Introduction to measuring alkalinity and acidity in the laboratory — 74
3.4	Developing equations for the description of alkalinity and acidity values of diprotic weak-acid systems — 75
3.5	The carbonate system as an example of a diprotic system — 75
3.5.1	Developing alkalinity and acidity equations with respect to the equivalence point of $H_2CO_3^*$ — 76
3.5.2	Developing alkalinity and acidity equations around the equivalence point of HCO_3^- — 78
3.5.3	Developing the alkalinity and acidity equations around the equivalence point of CO_3^{2-} — 79
3.5.4	Useful notes about the carbonate system and useful relationships between the values of pH, alkalinity, acidity and C_T — 80

3.6	Determining alkalinity and acidity values in the lab: Characterization of acid–base relationships in natural waters — 82
3.7	Standard laboratory alkalinity analysis — 83
3.8	More on water characterization through analysis of C_T and additional forms of alkalinity and acidity — 84
3.9	Buffer capacity of solutions — 85
3.9.1	Buffer capacity or buffer intensity — 85
3.9.2	Deriving the buffer capacity equation for a monoprotic, weak acid — 86
3.9.3	Expansion on the derivation of β to include diprotic and polyprotic systems using the carbonate system as an example for polyprotic systems — 88
3.10	Titration curves — 89
3.11	Alkalinity and acidity equations composed of several weak-acid systems — 92
3.12	Elaboration on laboratory methods for measuring alkalinity and acidity — 95
3.12.1	Gran titration for determining alkalinity — 97
3.12.2	Mathematical derivation of the Gran method — 98
4	Use of alkalinity and acidity equations for quantifying phenomena in chemical/environmental engineering and design of water and wastewater treatment processes — 101
4.1	Theoretical background related to acid-base calculations in aqueous solutions from the knowledge of alkalinity and acidity parameters — 101
4.2	Examples of acid-base problems from chemical/environmental engineering in which alkalinity and acidity terms can be used — 104
4.3	Examples for implementation of the principles of the calculation method for solving problems related to wastewater — 111
4.4	Using a method based on alkalinity and acidity mass balances to quantify the change in characterization of acid-base properties of water as a result of chemical dosage (deliberate or unintentional) — 117
4.4.1	Solution outline — 118
5	Equilibrium between the aqueous and gas phases and implications for water treatment processes — 125
5.1	Introduction — 125
5.2	Expressions describing concentrations of components in the gas phase — 126
5.3	Henry's law — 127

5.4	Factors affecting Henry's law constant — 130
5.4.1	The effect of the solution ionic strength on Henry's constant — 131
5.5	Systems that are closed to the atmosphere — 132
5.6	The carbonate system in the context of gas-liquid phase equilibrium equations — 133
5.7.	Distribution of species as a function of pH for systems that are in equilibrium with the gas phase — 137
6	Principles of equilibrium between the aqueous and solid phases with emphasis on precipitation and dissolution of $\text{CaCO}_3(s)$ — 145
6.1	Introduction — 145
6.2	The effect of ionic strength on the solubility constants — 147
6.3	Effect of temperature on the solubility constant — 148
6.4	Effect of the addition of one of the solid components on the concentration of the other component in equilibrium (common ion effect) — 148
6.5	Effect of side reactions on solubility of solids — 150
6.6	Precipitation/dissolution of CaCO_3 : qualitative and quantitative assessment of the saturation state — 151
6.6.1	Langelier saturation index (LSI) — 151
6.6.1.1	Mathematical development of the formula for calculating pH_L — 151
6.6.1.2	The inherent problems in the Langelier method — 152
6.6.2	Precise quantification of CaCO_3 precipitation/dissolution potential (CCPP method) — 153
6.6.3	Determination of the precipitation potential (numerical method) — 154
6.6.4	Comparison of LSI values and CCPP in a given solution — 155
6.6.5	Determining the precipitation potential (CCPP) graphically — 156
6.6.5.1	Modified Caldwell-Lawrence (MCL) diagrams — 156
6.6.5.2	MCL graph development — 156
7	Computer software for calculations in the field of aquatic chemistry and water treatment processes, with an emphasis on the Stasoft4.0 program — 163
7.1	Introduction — 163
7.2	Principles of calculation and limitations — 163
7.3	How to use the software — 165
7.4	Simulation of water treatment processes using the Stasoft4 program — 174
8	Water softening using the lime-soda ash softening method — 179
8.1	Introduction — 179

8.2	Deliberate modification of the aqueous-solid equilibrium state characteristics by the addition of chemicals to water — 179
8.3	Water softening — 181
8.3.1	Softening by lime-soda ash method — 183
8.3.2	Basic description of the stages of the lime-soda ash softening process — 184
9	Water stabilization and remineralization — 193
9.1	Introduction — 193
9.2	Overview of existing stabilization/remineralization technologies — 193
9.3	Direct dosage of chemicals — 194
9.3.1	$\text{Ca}(\text{OH})_2$ followed by CO_2 addition — 194
9.3.2	$\text{Ca}(\text{OH})_2$ and Na_2CO_3 or $\text{Ca}(\text{OH})_2$ and NaHCO_3 — 195
9.3.3	CaCl_2 and NaHCO_3 — 196
9.4	Blending of low TDS water and other water sources — 196
9.4.1	Blending case study — 197
9.5	Post treatment methods based on (quarry) calcite dissolution — 198
9.6	Acidic chemical agents used to enhance calcite dissolution — 198
9.7	Final pH adjustment — 200
9.8	Unintentional $\text{CO}_{2(g)}$ emission during calcite dissolution — 201
9.9	Dolomite dissolution as means of supplying Ca^{2+} , Mg^{2+} and carbonate alkalinity — 201
9.10	Design of stabilization/remineralization processes — 205
10	Problems and solutions — 213
References	243
Index	247