Contents

Preface ---- V

1	Introduction —— 1
1.1	Benefits and limitations of single-use technology —— 4
1.1.1	Improved process flexibility —— 4
1.1.2	Increased speed of implementation —— 4
1.1.3	Cost savings — 5
1.1.4	Increased product safety —— 5
1.1.5	Technical limitations — 6
1.1.6	Cost increases — 6
1.1.7	Increased complexity —— 6
1.1.8	Dependence on suppliers — 7
1.1.0	References — 7
2	Strategies for implementation of single-use technology: A risk- and
	science-based approach —— 9
2.1	A risk- and science-based approach —— 11
2.2	Implementation plan —— 14
2.3	Risk-assessment tools to support implementation —— 17
	References —— 18
3	Feasibility assessment of single-use technology and suppliers —— 19
3.1	Technical feasibility —— 19
3.2	Business assessment —— 25
3.3	Selection of a supplier of single-use technology —— 33
	References —— 38
4	Specifications and design of single-use technology —— 39
4.1	Framework for the design project —— 40
4.2	Design choices and risk —— 43
4.3	Specification —— 47
4.4	Design verification —— 49
	References —— 50
5	Validation —— 53
5.1	Qualification of materials and assemblies —— 54
5.1.1	Integrity —— 57
5.1.2	Compatibiliy —— 57
5.1.3	Sterility and cleanliness —— 57
5.2	Process qualification —— 58

5.2.1	Installation qualification and operational qualification - Water
	or buffer runs —— 60
5.2.2	Process simulation – Media fills — 61
5.2.3	Performance qualification - API stream 61
5.3	Continuous improvement of processes —— 62
	References —— 63
6	Case studies —— 65
6.1	Case study 1: Single-use bag systems —— 66
6.1.1	Material selection —— 66
6.1.2	Risk assessment for extractables and leachables — 68
6.1.3	Profiles of extractables and leachables — 70
6.1.4	Specification and design —— 73
6.1.5	Qualification of final bag assembly —— 77
6.2	Case study 2: Single-use bioreactor —— 83
6.2.1	Selection of single-use bioreactor technology —— 84
6.2.2	Specification and design of single-use bioreactors —— 88
6.2.3	Risk assessment of the single-use bioreactor process —— 101
6.2.4	Qualification of single-use bioreactors —— 101
6.3	Case study 3: Tangential-flow filtration —— 104
6.3.1	Selection of technology for tangential-flow filtration —— 105
6.3.2	Specification and design —— 107
6.3.3	Risk assessment to support design of a system —— 115
6.4	Case study 4: Formulation and fill-finish —— 124
6.4.1	Selection of fill-finish technology —— 125
6.4.2	Risk assessment of fill-finish —— 125
6.4.3	Qualification of fill-finish operations —— 128
	References —— 133
Abbrev	riations —— 135
_	

Appendix 1 Scoring Tables —— 137

Appendix 2 Risk Rating and Priority Number —— 139

Index ---- 141