Contents

About the Author — V Annotation — VII		
1	Electromagnetic pulse—a parcel from the past —— 1	
1.1	Introduction —— 1	
1.2	History of HEMP —— 1	
1.3	The issues of theoretical physics —— 9	
1.4	People's Commissariat for Internal Affairs (NKVD) as the primary	
	"designer" of the first Soviet nuclear explosive —— 12	
1.5	Thermonuclear bombs —— 29	
1.6	Nuclear test explosions —— 36	
1.7	The status of HEMP protection —— 53	
	Bibliography —— 59	
2	A contemporary view of HEMP for electrical engineers —— 60	
2.1	Is the contemporary view up to date? —— 60	
2.2	The basic physical processes —— 60	
	Bibliography —— 77	
3	HEMP simulators —— 79	
3.1	HEMP simulators: principle of operation —— 79	
3.2	Classification of HEMP simulators —— 81	
3.3	Foreign HEMP simulators —— 82	
3.4	HEMP simulators available in Russia and Ukraine —— 88	
3.5	Portable HEMP simulators —— 93	
4	The vulnerability of electronic equipment to HEMP —— 95	
4.1	Electronic equipment is the most important component of the modern	
	infrastructure —— 95	
4.2	The vulnerability of discrete electronic components to HEMP —— 96	
4.3	Vulnerability of integral circuits (microchips) to HEMP —— 99	
4.4	Vulnerability of microprocessors to HEMP —— 104	
4.5	Vulnerability of computers to HEMP —— 107	

4.6

Conclusions — 108

Bibliography —— 109

5	Electronic components for HEMP protection system —— 110
5.1	Testing of low-power protective components under the low pulse
	voltages —— 110
5.2	Testing of low-power protective components under the high pulse
	voltages —— 114
5.3	Testing of powerful protective components under conditions close to
	reality —— 118
5.4	Conclusions —— 125
	Bibliography —— 126
6	External protection of power systems' electronic equipment from
	HEMP 128
6.1	Introduction —— 128
6.2	Analysis of capability of conventional building materials to weaken
	electromagnetic emission —— 128
6.3	Composite construction materials with improved electrical
	conductivity —— 132
6.4	Materials absorbing electromagnetic emission —— 138
6.5	Another method for depression of HEMP electromagnetic field strength
	inside the power industry facilities containing the electronics —— 142
6.6	Reducing electronic equipment vulnerability to HEMP with architectural
	solutions —— 145
6.7	Conclusions —— 146
	Bibliography —— 146
7	The issues of electronic equipment grounding at the power facilities —— 149
7.1	Types of electromagnetic interference at power facilities —— 149
7.2	Challenges of the conventional grounding systems —— 150
7.3	Differences between lightning and HEMP —— 154
7.4	Grounding of electrical equipment as the main protective means for
	HEMP 160
7.5	Protection devices for HEMP —— 161
7.6	New method for grounding electronic equipment mounted inside the
	cabinets —— 162
	Bibliography —— 169
8	The issue of control cables selection for HEMP-protected electric
	facilities —— 171
8.1	Introduction —— 171
8.2	Designs and features of shielded control cables —— 171
8.3	Evaluation of control-cable shielding effectiveness —— 175
8.4	Choosing control cables —— 177

8.5	Conclusion —— 178
	Bibliography —— 178
9	Grounding of control-cable shields —— 179
9.1	Introduction —— 179
9.2	Shielding principles —— 179
9.3	Interference types and grounding options for cable shields —— 180
9.4	Problems and contradictions —— 181
9.5	Factors impacting the effectiveness of shield groundings —— 182
9.6	The suggested method of shield grounding —— 185
	Bibliography —— 187
10	HEMP filters 189
10.1	Introduction —— 189
10.2	Do the filters really protect from an electromagnetic pulse? —— 189
10.3	The frequency range of filters —— 193
10.4	Feasibility of HEMP equipment protection with filters —— 193
10.5	Protection of equipment from HEMP high-frequency noise —— 195
10.6	Protection of the equipment from the HEMP-generated pulse
	overvoltage —— 196
10.7	Ferrite filters —— 197
10.8	Conclusions —— 210
	Bibliography —— 211
11	High-voltage insulation interfaces —— 212
11.1	Introduction —— 212
11.2	High-voltage link for transmitting discrete commands in relay
	protection, automation and control systems —— 212
11.3	Usage reed-switch-based high-voltage interfaces in HEMP susceptibility
	tests —— 218
11.4	Design features of high-voltage isolation interfaces —— 219
	Bibliography —— 221
12	Improvement of the resilience of industrial cabinet-installed electronic
	equipment to HEMP Impact —— 222
12.1	Introduction —— 222
12.2	New cabinets for electronic equipment —— 222
12.3	Retrofitting existing cabinets equipped with glass doors —— 225
12.4	Enhancement of the cabinet cable entries —— 228
12.5	Voltage pulse suppression —— 233
12.6	Retrofitting grounding systems of electric cabinets —— 236
12.7	Conclusion —— 237

16

Bibliography —— 237

13	Basic principles of direct-current auxiliary-power system (DCAPS) protection —— 238
13.1	Introduction —— 238
13.2	Protection of DCAPS operating equipment from HEMP —— 238
13.3	Backup-power supplies for DCAPS systems —— 240
13.4	Mobile substations and features to protect their DCAPS from
	HEMP —— 245
13.5	Direct-current auxiliary-power systems of power plants —— 251
	Bibliography —— 252
14	Protection of telecommunication systems in electric power facilities from HEMP —— 253
14.1	Introduction —— 253
14.2	Ways to solve the problem —— 254
14.3	The use of fiber-optic communication lines —— 254
14.4	Protection telecommunication equipment with galvanic couplings —— 255
14.5	New devices for protecting existing telecommunication equipment —— 260
14.6	Protection of the communication cabinets —— 263
14.7	The general concept for communication-equipment protection —— 265
14.8	Retrofitting grounding systems of cabinets containing the electronic
	equipment —— 266
14.9	Retrofitting open-patch panels —— 267
14.10	Protection of the power supply system —— 267
14.11	Retrofitting the facility (room) containing the critical kinds of
	communication equipment —— 267
14.12	Conclusion —— 268
	Bibliography —— 268
15	Improvement of HEMP resilience of automatic fire-suppression systems —— 269
15.1	Introduction —— 269
15.2	Firefighting systems for power facilities — 269
15.3	Improvement of automatic firefighting system's resilience to
	HEMP —— 273
15.4	Conclusion —— 278
	Bibliography —— 278

Protection of diesel generators from HEMP —— 279

16.1	Introduction —— 279
16.2	Increasing resilience of medium- and high-capacity DGs —— 279
16.3	Protection of DGs stored and de-energized outdoors — 280
16.4	Protection of DGs connected to consumer network —— 284
16.5	Active protection method for diesel-generator controller — 288
16.6	Conclusion —— 295
	Bibliography —— 295
17	Features of HEMP resilience-test methods for power system
	electronics —— 296
17.1	Introduction —— 296
17.2	Features of testing equipment on a HEMP simulator —— 296
17.3	Test objectives —— 297
17.4	Features of the test procedure —— 298
17.5	Test modes and test-pulse parameters —— 300
17.6	Performance criteria —— 302
17.7	Conclusion —— 303
	Bibliography —— 304
18	Methods and means of evaluation of the effectiveness of HEMP protection
	of the installed power-system —— 305
18.1	Introduction —— 305
18.2	Testing of equipment resilience to direct impact of the HEMP electrical
	field (E1-component) —— 305
18.3	Equipment for HEMP filter testing —— 307
18.4	Equipment designed for evaluation of the effectiveness of building,
	room and cabinet shielding —— 311
18.5	Pulse voltage generators —— 313
18.6	Conclusion —— 315
	Bibliography —— 315
19	Features of testing digital protective relays resilience to HEMP —— 317
19.1	Use of performance criterion during the electromagnetic compatibility
	(EMC) test of electronic equipment —— 317
19.2	Features of using performance criterion during the HEMP resilience test
	of digital protective relays (DPR) —— 317
19.3	Criticism of the DPR testing method used —— 318
19.4	Analysis of the result of the second independent trial of the same type of DPR —— 320
19.5	Analysis of the result of the third independent trial of the same type of
	DPR 323
19.6	Conclusions —— 331

Bibliography —— 332

Establishment of inventory of electronic equipment's replacement modules as a way to improve survivability of the power system —— 334
Optimization of inventory of electronic equipment replacement modules —— 334
The problem of the traditional mode of SPTA storage —— 335
Requirements for protective containers —— 336
Protective containers available on the market —— 337
Conclusion — 340
Bibliography —— 341
The problem of impact of geomagnetically induced currents on power transformers and it solution —— 342
Geomagnetically induced currents generated by solar storms —— 342
Geomagnetically induced currents generated by HEMP —— 352
The effect of the E3 component of HEMP on electric power
equipment —— 353
Protection of power equipment from geomagnetically induced
currents — 354
Conclusions — 362
Bibliography —— 363
Standards on HEMP —— 365
Standards of International Electrotechnical Commission (IEC) —— 365
Standards of Institute of Electrical and Electronics Engineers
(IEEE) —— 366
Standards of European Commission —— 366
Standards of International Telecommunication Union (ITU) —— 366
Military Standards (USA) — 366
NATO Standards —— 367
EMP and its Impact on Power System (List of Reports) —— 369
EMP Theory —— 369
Geomagnetically Induced Currents and its Impact on Power
System 369
EMP Impact on Power System —— 370
European Projects related to Protection against HEMP 375