

Contents

Foreword — VII

Preface — IX

1	Symmetry elements and symmetry operations: molecular symmetry — 1
1.1	Introduction — 1
1.2	Molecular symmetry: in non-mathematical and geometrical sense — 1
1.3	Symmetry operations and symmetry elements — 2
1.4	Naming systems of notation for symmetry operations/elements — 3
1.5	Proper axis of symmetry — 4
1.6	Plane of symmetry — 9
1.7	Center of symmetry/inversion center — 15
1.8	Rotation-reflection axis or axis of improper rotations — 17
1.9	Identity — 26
	Exercises — 26
	Multiple choice questions — 26
	Short answer type questions — 27
	Long answer type questions — 27
2	Application of group theory to electronic spectroscopy — 29
2.1	Introduction — 29
2.2	Electronic spectroscopy — 29
2.2.1	Electronic spectra of organic compounds — 29
2.2.2	Allowed and forbidden transition: prediction through group theory — 30
2.2.3	Vibronic coupling — 33
2.2.4	Charge transfer spectra in simple and coordination compounds — 45
2.2.5	Electronic spectra of transition metal complexes — 49
2.2.5.1	Determination of Ttrms or term symbols — 49
2.2.5.2	Assignment of term symbols of different atoms — 51
2.2.5.3	Terms for atoms having more than one electron — 52
2.2.6	Hund's Rules: determination of ground state terms for many electron atoms/ions — 57
2.2.7	Hole formulation: term symbols for p^n and p^{6-n} and d^n and d^{10-n} configurations — 60
2.2.8	Symmetry species of terms — 60

2.2.9	Splitting of terms: step to arrive to Orgel diagrams — 62
2.2.10	How to decide the ground state in group theoretical terms as Mulliken symbols in cubic field? — 62
2.2.10.1	Tetrahedral complexes with d^1 and d^9 electronic configurations — 65
2.2.10.2	Octahedral complexes with d^4 and d^6 electronic configurations — 66
2.2.10.3	Octahedral complexes with d^2 , d^8 and T_d complexes with d^2 electronic configurations — 69
2.2.10.4	Octahedral complexes with d^3 , d^7 and T_d complexes with d^2 , d^3 , d^7 , d^8 electronic configurations — 73
2.2.10.5	Octahedral complexes with d^5 electronic configuration — 79
2.3	Effect of Jahn-Teller distortion on electronic spectra of complexes — 80
2.4	Correlation diagram: ordering of energy states — 90
2.5	Correlation diagram and Hole formalism — 110
2.5.1	Uses of correlation diagrams — 110
2.6	Tanabe-Sugano correlation diagram — 111
2.7	Variation in Racah parameter B: nephelauxetic series — 117
2.7.1	Evaluation of Dq , B' and β parameters — 119
	Exercises — 139
	Multiple choice questions/fill in the blanks — 139
	Short answer type questions — 140
	Long answer type questions — 141

3	Molecular symmetry and group theory to vibrational spectroscopy — 143
3.1	Introduction — 143
3.2	Generation of reducible representation — 149
3.3	Symmetry selection rules for IR and Raman spectroscopy: identification of IR and Raman active vibrations — 202
3.4	Complementary nature of IR and Raman spectra — 207
3.5	The mutual exclusion principle/rule — 208
3.6	Polarization of Raman lines — 210
3.7	Prediction of IR and Raman active modes in some molecules of different point Groups — 211
3.8	Complications in IR and Raman spectra and difficulties in assignments — 310
3.8.1	Overtones, combination band, hot bands and Fermi resonance — 310
3.8.2	Overtones — 311

3.8.3	Method for finding overtones for degenerate vibrational modes — 312
3.8.4	Combination bands — 319
3.8.5	Hot bands — 323
3.8.6	Fermi resonance — 323
3.9	Ascent-descent or group–subgroup in symmetry: interpretation of spectral data — 325
3.10	IR and Raman spectra of linear molecules — 331
3.10.1	Inspection method — 333
3.10.2	Subgroup method — 335
3.10.3	Integration method — 346
3.11	Structural diagnosis: application of infrared and Raman spectra — 349
3.11.1	Predicting /fitting structure/geometry of molecule — 350
3.12	Prediction of coordination sites and linkage isomerism — 355
3.13	Denticity assignment for anionic ligands — 359
3.14	Geometrical isomers: distinction — 366
3.15	Metal carbonyls: structural elucidation — 368
	Exercises — 374
	Multiple choice questions/fill in the blank — 374
	Short answer type questions — 375
	Long answer type questions — 375
4	Chemical reactions: orbital symmetry rules — 377
4.1	Introduction — 377
4.2	Chemical reactions: symmetry rules — 378
4.3	Inorganic/organic reactions: symmetry considerations — 381
4.4	Nucleophilic displacement reactions — 394
4.5	Berry's pseudorotation: orbital symmetry control — 396
4.6	Correlation diagrams: prediction of orbital symmetry allowedness for Berry's pseudorotation — 399
4.7	Stable shape of the molecules: symmetry rules — 400
4.8	Symmetry controlled pericyclic reactions — 403
4.9	Classes of pericyclic reactions — 403
4.10	Interpretation of pericyclic reactions: different approaches — 406
4.11	Woodward–Hoffmann approach — 407
4.11.1	Symmetry allowed and symmetry forbidden reactions in pericyclic reactions — 412
4.11.2	Conservation of orbital symmetry — 412
4.11.3	Conrotatory and disrotatory ways of movement in pericyclic reaction — 413
4.11.4	σ , π and ω orbitals and electrons — 415

- 4.11.5 Components in pericyclic reactions — 415
- 4.12 Mechanistic interpretation of some pericyclic reactions with symmetry property — 416
- 4.13 Frontier molecular orbital approach: interpretation of pericyclic reactions — 428
- 4.14 Woodward and Hoffmann's rules and FMO approach: electrocyclic reactions on the basis of components — 433
 - Excercises — 438
 - Multiple choice questions/fill in the blank — 438
 - Short answer type questions — 439
 - Long answer type questions — 439

Appendix I — 441

Appendix II — 455

Appendix III — 457

Bibliography — 459

Index — 461