Contents

Pro	eface		V
1	Intro	duction	1
	1.1	Delay Systems	1
	1.2	How Does the Difficulty of Delay Systems Compare with PDEs? .	2
	1.3	A Short History of Backstepping	3
	1.4	From Predictor Feedbacks for LTI-ODE Systems to the Results	
		in This Book	4
	1.5	Organization of the Book	4
	1.6	Use of Examples	5
	1.7	Krasovskii Theorem or Direct Stability Estimates?	7
	1.8	DDE or Transport PDE Representation of the Actuator/Sensor	
		State?	9
	1.9	Notation, Spaces, Norms, and Solutions	9
	1.10	Beyond This Book	11
Pa	rt I Liı	near Delay-ODE Cascades	
2	Basic	Predictor Feedback	17
	2.1	Basic Idea of Predictor Feedback Design for ODE Systems with	
		Actuator Delay	18
	2.2	Backstepping Design Via the Transport PDE	19
	2.3	On the Relation Among the Backstepping Design, the	
		FSA/Reduction Design, and the Original Smith Controller	22
	2.4	Stability of Predictor Feedback	23
	2.5	Examples of Predictor Feedback Design	27
	2.6	Stability Proof Without a Lyapunov Function	30
	2.7	Backstepping Transformation in the Standard Delay Notation	36
	2.8	Notes and References	39

digitalisiert durch

x Contents

3	Pred	lictor Observers	41	
	3.1	Observers for ODE Systems with Sensor Delay	41	
	3.2	Example: Predictor Observer	44	
	3.3	On Observers That Do Not Estimate the Sensor State	46	
	3.4	Observer-Based Predictor Feedback for Systems with Input Delay	48	
	3.5	The Relation with the Original Smith Controller	48	
	3.6	Separation Principle: Stability Under Observer-Based Predictor		
		Feedback	49	
	3.7	Notes and References	52	
4	Inverse Optimal Redesign			
	4.1	Inverse Optimal Redesign	54	
	4.2	Is Direct Optimality Possible Without Solving Operator Riccati		
		Equations?	59	
	4.3	Disturbance Attenuation	60	
	4.4	Notes and References	63	
5	Robustness to Delay Mismatch			
	5.1	Robustness in the L_2 Norm		
	5.2	Aside: Robustness to Predictor for Systems That Do Not Need It		
	5.3	Robustness in the H_1 Norm		
	5.4	Notes and References	83	
6	Time-Varying Delay			
	6.1	Predictor Feedback Design with Time-Varying Actuator Delay		
	6.2	Stability Analysis		
	6.3	Observer Design with Time-Varying Sensor Delay	96	
	6.4	Examples	97	
	6.5	Notes and References	101	
Pa	rt II A	Adaptive Control		
7	Dela	y-Adaptive Full-State Predictor Feedback	107	
	7.1	Categorization of Adaptive Control Problems with Actuator Delay	109	
	7.2	Delay-Adaptive Predictor Feedback with Full-State Measurement.	110	
	7.3	Proof of Stability for Full-State Feedback	112	
	7.4	Simulations	117	
	7.5	Notes and References	119	
8	Delay-Adaptive Predictor with Estimation of Actuator State 12			
	8.1	Adaptive Control with Estimation of the Transport PDE State		
	8.2	Local Stability and Regulation		
	8.3	Simulations		
	8.4	Notes and References		

Contents xi

9	Traje	ectory Tracking Under Unknown Delay and ODE Parameters	. 135
	9.1	Problem Formulation	. 135
	9.2	Control Design	. 137
	9.3	Simulations	. 140
	9.4	Proof of Global Stability and Tracking	
	9.5	Notes and References	
Par	t III N	Nonlinear Systems	
10	Nonli	inear Predictor Feedback	. 153
	10.1	Predictor Feedback Design for a Scalar Plant with a Quadratic	
		Nonlinearity	. 155
	10.2	Nonlinear Infinite-Dimensional "Backstepping Transformation"	
		and Its Inverse	. 157
	10.3	Stability	. 159
	10.4	Failure of the Uncompensated Controller	. 165
	10.5	What Would the Nonlinear Version of the Standard "Smith	
		Predictor" Be?	. 168
	10.6	Notes and References	. 169
11	Forward-Complete Systems		
	11.1	Predictor Feedback for General Nonlinear Systems	. 171
	11.2	A Categorization of Systems That Are Globally Stabilizable	
		Under Predictor Feedback	. 173
	11.3	The Nonlinear Backstepping Transformation of the Actuator State	176
	11.4	Lyapunov Functions for the Autonomous Transport PDE	. 178
	11.5	Lyapunov-Based Stability Analysis for Forward-Complete	
		Nonlinear Systems	. 181
	11.6	Stability Proof Without a Lyapunov Function	. 187
	11.7	Notes and References	. 190
12	Stric	t-Feedforward Systems	. 191
	12.1	Example: A Second-Order Strict-Feedforward Nonlinear System	. 192
	12.2	General Strict-Feedforward Nonlinear Systems: Integrator	
		Forwarding	
	12.3	Predictor for Strict-Feedforward Systems	. 199
	12.4	General Strict-Feedforward Nonlinear Systems: Stability Analysis	201
	12.5	Example of Predictor Design for a Third-Order System That Is	
		Not Linearizable	. 207
	12.6	An Alternative: A Design with Nested Saturations	
	12.7	Extension to Nonlinear Systems with Time-Varying Input Delay.	
	12.8	Notes and References	. 214

xii Contents

13	Linea	rizable Strict-Feedforward Systems	. 217
	13.1	Linearizable Strict-Feedforward Systems	. 218
	13.2	Integrator Forwarding (SJK) Algorithm Applied to Linearizable	
		Strict-Feedforward Systems	. 218
	13.3	Two Sets of Linearizing Coordinates	. 219
	13.4	Predictor Feedback for Linearizable Strict-Feedforward Systems.	. 220
	13.5	Explicit Closed-Loop Solutions for Linearizable Strict-	
		Feedforward Systems	. 223
	13.6	Examples with Linearizable Strict-Feedforward Systems	. 227
	13.7	Notes and References	
Par	t IV P	PDE-ODE Cascades	
14	ODE:	s with General Transport-Like Actuator Dynamics	. 235
	14.1	First-Order Hyperbolic Partial Integro-Differential Equations	. 235
	14.2	Examples of Explicit Design	
	14.3	Korteweg-de Vries-like Equation	
	14.4	Simulation Example	. 246
	14.5	ODE with Actuator Dynamics Given by a General First-Order	
		Hyperbolic PIDE	. 246
	14.6	An ODE with Pure Advection-Reaction Actuator Dynamics	. 250
	14.7	Notes and References	. 251
15	ODE	s with Heat PDE Actuator Dynamics	. 253
	15.1	Stabilization with Full-State Feedback	. 254
	15.2	Example: Heat PDE Actuator Dynamics	. 261
	15.3	Robustness to Diffusion Coefficient Uncertainty	. 262
	15.4	Expressing the Compensator in Terms of Input Signal Rather	
		Than Heat Equation State	. 264
	15.5	On Differences Between Compensation of Delay Dynamics and	
		Diffusion Dynamics	. 264
	15.6	Notes and References	
16	ODE	s with Wave PDE Actuator Dynamics	. 269
	16.1	Control Design for Wave PDE Compensation with Neumann	
		Actuation	. 270
	16.2	Stability of the Closed-Loop System	
	16.3	Robustness to Uncertainty in the Wave Propagation Speed	
	16.4	An Alternative Design with Dirichlet Actuation	
	16.5	Expressing the Compensator in Terms of Input Signal Rather	
		Than Wave Equation State	. 294
	16.6	Examples: Wave PDE Actuator Dynamics	
	16.7	On the Stabilization of the Wave PDE Alone by Neumann and	
	,	Dirichlet Actuation	. 302
	16.8	Notes and References	

Contents xiii

17	Obse	rvers for ODEs Involving PDE Sensor and Actuator Dynamics	. 305
	17.1	Observer for ODE with Heat PDE Sensor Dynamics	. 306
	17.2	Example: Heat PDE Sensor Dynamics	. 309
	17.3	Observer-Based Controller for ODEs with Heat PDE Actuator	
		Dynamics	. 310
	17.4	Observer for ODE with Wave PDE Sensor Dynamics	
	17.5	Example: Wave PDE Sensor Dynamics	. 320
	17.6	Observer-Based Controller for ODEs with Wave PDE Actuator	
		Dynamics	. 322
	17.7	Notes and References	. 327
Par	t V D	elay-PDE and PDE-PDE Cascades	
18	Unsta	able Reaction-Diffusion PDE with Input Delay	. 331
	18.1	Control Design for the Unstable Reaction-Diffusion PDE with	
		Input Delay	. 331
	18.2	The Baseline Design $(D = 0)$ for the Unstable Reaction-Diffusion	
		PDE	. 334
	18.3	Inverse Backstepping Transformations	. 335
	18.4	Stability of the Target System (w,z)	. 336
	18.5	Stability of the System in the Original Variables (u,v)	. 339
	18.6	Estimates for the Transformation Kernels	. 341
	18.7	Explicit Solutions for the Control Gains	. 349
	18.8	Explicit Solutions of the Closed-Loop System	. 350
	18.9	Notes and References	. 354
19	Antis	table Wave PDE with Input Delay	. 357
	19.1	Control Design for Antistable Wave PDE with Input Delay	. 357
	19.2	The Baseline Design ($D = 0$) for the Antistable Wave PDE	. 363
	19.3	Explicit Gain Functions	. 365
	19.4	Stability of the Target System (w,z)	. 370
	19.5	Stability in the Original Plant Variables (u,v)	. 377
	19.6	Notes and References	. 383
20	Othe	r PDE-PDE Cascades	. 385
	20.1	Antistable Wave Equation with Heat Equation at Its Input	. 385
	20.2	Unstable Reaction-Diffusion Equation with a Wave Equation at	
		Its Input	. 388
	20.3	Notes and References	
A	Poinc	earé, Agmon, and Other Basic Inequalities	. 393
В	Input	-Output Lemmas for LTI and LTV Systems	. 397

xiv Contents

C	Lyap	ounov Stability and ISS for Nonlinear ODEs	403
	C.1	Lyapunov Stability and Class-X Functions	403
	C.2	Input-to-State Stability	
D	Besse	el Functions	413
	D.1	Bessel Function J_n	
	D.2	Modified Bessel Function I _n	
E	Para	meter Projection	417
F	Stric	rt-Feedforward Systems: A General Design	421
	F.1	The Class of Systems	
	F.2	The Sepulchre-Jankovic-Kokotovic Algorithm	
G	Stric	et-Feedforward Systems: A Linearizable Class	425
	G.1	Linearizability of Feedforward Systems	
	G.2	Algorithms for Linearizable Feedforward Systems	
H	Stric	et-Feedforward Systems: Not Linearizable	441
	H.1	Algorithms for Nonlinearizable Feedforward Systems	
	H.2	Block-Forwarding	
	H.3	Interlaced Feedforward-Feedback Systems	
Re	ference	es	453
Inc	lex		465