

Contents

Preface XI

1	Fundamentals of Porous Silicon Preparation	1
1.1	Introduction	1
1.2	Chemical Reactions Governing the Dissolution of Silicon	2
1.2.1	Silicon Oxides and Their Dissolution in HF	3
1.2.2	Silicon Oxides and Their Dissolution in Basic Media	3
1.2.3	Silicon Hydrides	4
1.3	Experimental Set-up and Terminology for Electrochemical Etching of Porous Silicon	5
1.3.1	Two-Electrode Cell	6
1.3.2	Three-Electrode Cell	6
1.4	Electrochemical Reactions in the Silicon System	7
1.4.1	Four-Electron Electrochemical Oxidation of Silicon	8
1.4.2	Two-Electron Electrochemical Oxidation of Silicon	9
1.4.3	Electropolishing	10
1.5	Density, Porosity, and Pore Size Definitions	11
1.6	Mechanisms of Electrochemical Dissolution and Pore Formation	13
1.6.1	Chemical Factors Controlling the Electrochemical Etch	16
1.6.2	Crystal Face Selectivity	18
1.6.3	Physical Factors Controlling the Electrochemical Etch	18
1.7	Resume of the Properties of Crystalline Silicon	19
1.7.1	Orientation	19
1.7.2	Band Structure	20
1.7.3	Electrons and Holes	21
1.7.4	Photoexcitation of Semiconductors	22
1.7.5	Dopants	23
1.7.6	Conductivity	24
1.7.7	Evolution of Energy Bands upon Immersion in an Electrolyte	24
1.7.8	Charge Transport at p-Type Si Liquid Junctions	26

1.7.9	Idealized Current–Voltage Curve at p-Type Liquid Junctions	26
1.7.10	Energetics at n-Type Si Liquid Junctions	28
1.7.11	Idealized Current–Voltage Curve at n-type Liquid Junctions	28
1.8	Choosing, Characterizing, and Preparing a Silicon Wafer	28
1.8.1	Measurement of Wafer Resistivity	29
1.8.2	Cleaving a Silicon Wafer	34
1.8.3	Determination of Carrier Type by the Hot-Probe Method	36
1.8.4	Ohmic Contacts	36
1.8.4.1	Making an Ohmic Contact by Metal Evaporation	39
1.8.4.2	Making an Ohmic Contact by Mechanical Abrasion	40
	References	40
2	Preparation of Micro-, Meso-, and Macro-Porous Silicon Layers	43
2.1	Etch Cell: Materials and Construction	43
2.2	Power Supply	44
2.3	Other Supplies	48
2.4	Safety Precautions and Handling of Waste	48
2.5	Preparing HF Electrolyte Solutions	50
2.6	Cleaning Wafers Prior to Etching	51
2.6.1	No Precleaning	51
2.6.2	Ultrasonic Cleaning	51
2.6.3	RCA Cleaning	52
2.6.4	Removal of a Sacrificial Porous Layer with Strong Base	52
2.7	Preparation of Microporous Silicon from a p-Type Wafer	53
2.8	Preparation of Mesoporous Silicon from a p ⁺⁺ -Type Wafer	57
2.9	Preparation of Macroporous, Luminescent Porous Silicon from an n-Type Wafer (Frontside Illumination)	59
2.9.1	Power Supply Limitations	63
2.10	Preparation of Macroporous, Luminescent Porous Silicon from an n-Type Wafer (Back Side Illumination)	64
2.11	Preparation of Porous Silicon by Stain Etching	68
2.12	Preparation of Silicon Nanowire Arrays by Metal-Assisted Etching	73
	References	75
3	Preparation of Spatially Modulated Porous Silicon Layers	77
3.1	Time-Programmable Current Source	78
3.1.1	Time Resolution Issues	79
3.1.2	Etching with an Analog Source	80
3.1.3	Etching with a Digital Source	82
3.2	Pore Modulation in the z-Direction: Double Layer	83
3.3	Pore Modulation in the z-Direction: Rugate Filter	83
3.3.1	Tunability of the Rugate Spectral Peak Wavelength	88
3.3.2	Width of the Spectral Band	92

3.4	More Complicated Photonic Devices: Bragg Stacks, Microcavities, and Multi-Line Spectral Filters	94
3.4.1	Bragg Reflector	96
3.4.2	Multiple Spectral Peaks—“Spectral Barcodes”	100
3.5	Lateral Pore Gradients (in the x – y Plane)	104
3.6	Patterning in the x – y Plane Using Physical or Virtual Masks	108
3.6.1	Physical Masking Using Photoresists	109
3.6.2	Virtual Masking Using Photoelectrochemistry	112
3.7	Other Patterning Methods	114
	References	114
4	Freestanding Porous Silicon Films and Particles	119
4.1	Freestanding Films of Porous Silicon—“Lift-offs”	120
4.2	Micron-scale Particles of Porous Silicon by Ultrasonication of Lift-off Films	120
4.3	Core–Shell (Si/SiO ₂) Nanoparticles of Luminescent Porous Silicon by Ultrasonication	126
	References	130
5	Characterization of Porous Silicon	133
5.1	Gravimetric Determination of Porosity and Thickness	134
5.1.1	Errors and Limitations of the Gravimetric Method	137
5.2	Electron Microscopy and Scanned Probe Imaging Methods	138
5.2.1	Cross-Sectional Imaging	138
5.2.2	Plan-View (Top-Down) Imaging	139
5.3	Optical Reflectance Measurements	139
5.3.1	Instrumentation to Collect Reflectance Data	139
5.3.1.1	Reflectance Optics	140
5.3.1.2	Wavelength Calibration	142
5.3.2	Principles of Fabry–Pérot Interference	143
5.3.3	Analyzing Fabry–Pérot Interference Spectra by Fourier Transform: the RIFTS Method	150
5.3.3.1	Preparation of Spectrum for Fast Fourier Transform	151
5.3.3.2	Interpretation of the Fast Fourier Transform	153
5.3.4	Thickness and Porosity by the Spectroscopic Liquid Infiltration Method (SLIM)	154
5.3.4.1	Bruggeman Effective Medium Approximation	155
5.3.4.2	Determination of Thickness and Porosity by SLIM	156
5.3.4.3	Determination of Index of Refraction of the Porous Skeleton	156
5.3.4.4	Effect of Skeleton Index on Porosity Determined by SLIM	158
5.3.5	Comparison of Gravimetric Measurement with SLIM for Porosity and Thickness Determination	159
5.3.6	Analysis of Double-Layer Structures Using RIFTS	162

5.4	Porosity, Pore size, and Pore Size Distribution by Nitrogen Adsorption Analysis (BET, BJH, and BdB Methods)	167
5.5	Measurement of Steady-State Photoluminescence Spectra	170
5.5.1	Origin of Photoluminescence from Porous Silicon	170
5.5.1.1	Tunability of the Photoluminescence Spectrum	171
5.5.1.2	Mechanisms of Photoluminescence	171
5.5.2	Instrumentation to Acquire Steady-State Photoluminescence Spectra	173
5.6	Time-Resolved Photoluminescence Spectra	173
5.6.1	Long, Nonexponential Excited State Lifetimes	173
5.6.2	Influence of Surface Traps	175
5.7	Infrared Spectroscopy of Porous Silicon	176
5.7.1	Characteristic Group Frequencies for Porous Silicon	176
5.7.2	Measurement of FTIR Spectra of Porous Silicon	178
5.7.2.1	Transmission Mode Measurement Using the Standard Etch Cell	179
	References	181
6	Chemistry of Porous Silicon	189
6.1	Oxide-Forming Reactions of Porous Silicon	190
6.1.1	Temperature Dependence of Oxidation Using Gas-Phase Oxidants	190
6.1.2	Thermal (Air) Oxidation	191
6.1.3	Ozone Oxidation	192
6.1.4	High-Pressure Water Vapor Annealing	193
6.1.5	Oxidation in Aqueous Solutions	193
6.1.5.1	Aqueous Oxidation Induced by Cationic Surfactants	194
6.1.6	Electrochemical Oxidation in Aqueous Mineral Acids	194
6.1.7	Oxidation by Organic Species: Ketones, Aldehydes, Quinones, and Dimethylsulfoxide	195
6.1.8	Effect of Chemical Oxidation on Pore Morphology	196
6.2	Biological Implications of the Aqueous Chemistry of Porous Silicon	198
6.3	Formation of Silicon–Carbon Bonds	200
6.3.1	Thermal Hydrosilylation to Produce Si–C Bonds	200
6.3.2	Working with Air- and Water-Sensitive Compounds–Schlenk Line Manipulations	201
6.3.3	Classification of Surface Chemistry by Contact Angle	203
6.3.4	Microwave-Assisted Hydrosilylation to Produce Si–C Bonds	204
6.3.5	Chemical or Electrochemical Grafting to Produce Si–C Bonds	206
6.4	Thermal Carbonization Reactions	208
6.4.1	Thermal Degradation of Acetylene to form “Hydrocarbonized” Porous Silicon	208

6.4.2	Thermal Degradation of Polymers to Form “Carbonized” Porous Silicon	209
6.5	Conjugation of Biomolecules to Modified Porous Silicon	211
6.5.1	Carbodiimide Coupling Reagents	211
6.5.2	Attachment of PEG to Improve Biocompatibility	212
6.5.3	Biomodification of “Hydrocarbonized” Porous Silicon	213
6.5.4	Silanol-Based Coupling to Oxidized Porous Silicon Surfaces	215
6.6	Chemical Modification in Tandem with Etching	217
6.7	Metallization Reactions of Porous Silicon	218
	References	219

Appendix A1. Etch Cell Engineering Diagrams and Schematics 229

Standard or Small Etch Cell-Complete	229
Standard Etch Cell Top Piece	230
Small Etch Cell Top Piece	231
Etch Cell Base (for Either Standard or Small Etch Cell)	232
Large Etch Cell-Complete	232
Large Etch Cell Top Piece	233
Large Etch Cell Base	233

Appendix A2. Safety Precautions When Working with Hydrofluoric Acid 235

Hydrofluoric Acid Hazards	235
First Aid Measures for HF Contact	236
Note to Physician	238
HF Antidote Gel	239
Further Reading	239

Appendix A3. Gas Dosing Cell Engineering Diagrams and Schematics 241

Gas Dosing Cell Top Piece	242
Gas Dosing Cell Middle Piece	243
Gas Dosing Cell Bottom Piece	244

Index 245