Table of Contents

Acknowledgements Abstract Terminology List of Acronyms

1	Introduction	1
1.1	Objectives and Challenges	3
1.2	Overview	7
2	State of the Art	9
2.1	Evolution of the Vehicle Network Architecture	9
2.1.1	Introduction of Electronics in the Vehicle	10
2.1.2	Logical Networking of Electronic Systems	11
2.1.3	Introduction of Data Communication Buses	11
2.1.4	Functional Domains and Communication Gateways	13
2.2	The Complexity of the Network Architecture	16
2.2.1	Complexity Drivers	16
2.2.2	The Function-Oriented Approach	17
2.2.3	Standardisation Efforts	18
2.3	Design of the Electronic Network Architecture	21
2.3.1	The Architecture Design Phase in the Development Process	21
2.3.2	Conventional Design Approaches	22
2.3.3	Automated Design Approaches	23
2.4	Automated Design Approaches	23
2.4.1	A Function-Oriented Design Method (Approach 1)	23
2.4.2	Partitioning functions in networked systems (Approach 2)	24
2.4.3	Architecting Automotive Embedded Systems (Approach 3)	24
2.4.4	Model-based design of E/E systems (Approach 4)	26
2.4.5	Comparison of the Presented Approaches and Conclusions	27
2.5	Summary	28
3	A Computer-Based Description	30
3.1	Object-Oriented Approach and Analysis	30

3.1.1	Advantages of a Model-Based Approach	30
3.1.2	Choice of the Object-Oriented Approach	31
3.1.3	The Object-Oriented Analysis	31
3.2	Existing Description Models	34
3.2.1	Field Bus Exchange Format	34
3.2.2	AUTOSAR System Template	35
3.2.3	PREEvision Data Model	36
3.2.4	Comparison of the Presented Data Models and Conclusions	37
3.3	A Description Model Based on FIBEX	38
3.3.1	Application Component Network	38
3.3.2	Physical Topology and Communication	39
3.3.3	Network Services	40
3.4	Summary	41
4	A New Method for Architecture Design	43
4.1	Complexity of the Optimisation Problem	44
4.2	Multi-Objective Optimisation Algorithms	46
4.2.1	Overview of Multi-Objective Optimisation Methods	47
4.2.2	Approximation of the Pareto Optimal Set	48
4.2.3	Multi-Objective Evolutionary Algorithms	50
4.3	A New Algorithm for Design Optimisation	54
4.4	Generation of Design Alternatives	58
4.4.1	Encoding of Design Alternatives	59
4.4.2	Generation of the Initial Population	61
4.4.3	Variation Mechanisms	62
4.4.4	Handling of Design Constraints	64
4.5	Signal Routing and Network Services	66
4.5.1	Signal Routing	67
4.5.2	Schedulability of Communication Requirements	70
4.5.3	Heuristics for the Deployment of Network Services	74
4.6	Handling of Constraints on Design Objectives	76
4.6.1	Related Works	76
4.6.2	Developed Heuristic	77
4.7	Summary	79

5	Evaluation and Decision Process80		
5.1	Derivation of Design Constraints and Objectives80		
5.1.1	Design Constraints		
5.1.2	Design Objectives83		
5.2	Quantification of Design Objectives84		
5.2.1	Product Cost efficiency		
5.2.2	Reliability87		
5.2.3	Efficiency of Variants Management92		
5.2.4	Testability94		
5.2.5	System Extensibility95		
5.2.6	The Combination of Key Figures into Metrics96		
5.3	Decision Making Process96		
5.4	Derivation of Priority Vectors98		
5.4.1	Derivation of Priority Vectors from Pairwise Comparisons99		
5.4.2	Synthesis of a Group Outcome		
5.5	Summary		
6	Realisation and Verification103		
6.1	Realisation103		
6.1.1	Description of the Architecture Design & Optimisation Tool 104		
6.1.2	Input and Output Files		
6.1.3	Optimisation Algorithms		
6.1.4	Manual Modification of Design Alternatives112		
6.2	Verification113		
6.2.1	Tool Setup and Execution		
6.2.2	Results and Discussion		
6.3	Summary		
7	Conclusion and Outlook123		
7.1	Conclusion and Implications123		
7.2	Outlook		
List of References			
List of Figures132			
List of Tables135			
Curriculum Vitae136			