Contents

1	Introduction: Main Ideas			
	1.1	Role o	of Engineering Geological Investigations	1
	1.2	Scope	and Aim of the Subject. Short History	
		of Soi	l Mechanics	1
	1.3	Use o	f the Continuum Mechanics Methods	2
	1.4	Main	Properties of Soils	4
		1.4.1	Stresses in Soil	4
		1.4.2	Settling of Soil	6
		1.4.3		l 1
	1.5	Descr	iption of Properties of Soils and Other Materials	
		by Me	ethods of Mechanics	13
		1.5.1	General Considerations	13
		1.5.2	The Use of the Elasticity Theory	l 4
		1.5.3	The Bases of Ultimate Plastic State Theory 1	17
		1.5.4	Simplest Theories of Retaining Walls	21
		1.5.5	Longtime Strength 2	24
		1.5.6	Eccentric Compression and Determination of Creep	
			Parameters from Bending Tests	26
		1.5.7	Fracture of Tunnel Arch	29
2	Ma	in Equ	nations in Media Mechanics 3	33
	2.1	Stress	es in Body 3	33
	2.2	Displacements and Strains		35
	2.3			36
		2.3.1	Generalised Hooke's Law 3	36
		2.3.2	Non-linear Equations 3	37
		2.3.3	Constitutive Equations for Anisotropic Materials 3	38
	2.4	Soluti	on Methods of Mechanical Problems	12
		2.4.1	General Considerations 4	12
		242	Basic Equations for Anti-plane Deformation	12

		2.4.3	Plane Problem	44
		2.4.4	Axisymmetric Problem	46
			Spherical Coordinates	47
	2.5		mical Profile of Triangular Dam Under Self-Weight	
			aternal Pressure of Water	48
_	_			51
3			tic Solutions	51
	3.1		udinal Shear	51
		3.1.1	General Considerations	52
		3.1.2	Longitudinal Displacement of Strip	04
		3.1.3	Deformation of Massif with Circular Hole	53
		0.1.4	of Unit Radius	54
		3.1.4	Brittle Rupture of Body with Crack	56
		3.1.5	Conclusion	56
	3.2		Problem	56
		3.2.1	Wedge Under One-Sided Load	57
		3.2.2	Wedge Pressed by Inclined Plates	91
		3.2.3	Wedge Under Concentrated Force in its Apex:	co
		0.0.4	Some Generalizations	62
		3.2.4	Beams on Elastic Foundation	65
		3.2.5	Use of Complex Variables	68
		3.2.6	General Relations for a Semi-Plane	70
		207	Under Vertical Load	70
		3.2.7	Crack in Tension	70
		3.2.8	Critical Strength	71
		3.2.9	Stresses and Displacements Under Plane Punch	73
			General Relations for Transversal Shear	74
			Rupture due to Crack in Transversal Shear	74
			Constant Displacement at Transversal Shear	75 70
	0.0		Inclined Crack in Tension	76
	3.3	-	nmetric Problem and its Generalization	77
		3.3.1	Sphere, Cylinder and Cone Under External	
		0.00	and Internal Pressure	77
		3.3.2	Boussinesq's Solution and its Generalization	79
		3.3.3	Short Information on Bending of Thin Plates	84
		3.3.4	Circular Crack in Tension	87
4			astic and Ultimate State of Perfect	
	Plastic Bodies		89	
	4.1	Anti-F	Plane Deformation	89
		4.1.1	Ultimate State at Torsion	89
		4.1.2	Plastic Zones Near Crack and Punch Ends	90
	4.2	Plane	Deformation	92
		4.2.1	Elastic-Plastic Deformation and Failure of Slope	92
		4.2.2	Compression of Massif by Inclined Rigid Plates	94
			~	

		4.2.3	Penetration of Wedge and Load-bearing Capacity
			of Piles Sheet
		4.2.4	Theory of Slip Lines
		4.2.5	Ultimate State of Some Plastic Bodies104
		4.2.6	Ultimate State of Some Soil Structures
		4.2.7	Pressure of Soils on Retaining Walls113
		4.2.8	Stability of Footings
		4.2.9	Elementary Tasks of Slope Stability117
		4.2.10	Some Methods of Appreciation of Slopes Stability 119
	4.3	Axisyı	mmetric Problem
		4.3.1	Elastic-plastic and Ultimate States
			of Thick-walled Elements
		4.3.2	Compression of Cylinder by Rough Plates
		4.3.3	Flow of Material within Cone
		4.3.4	Penetration of Rigid Cone and Load-bearing
			Capacity of Circular Pile
	4.4	Interm	nediary Conclusion
5	Ult	imate !	State of Structures at Small Non-Linear Strains 131
	5.1	Fractu	re Near Edges of Cracks and Punch at Anti-Plane
		Deform	nation
		5.1.1	General Considerations131
		5.1.2	Case of Crack Propagation
		5.1.3	Plastic Zones Near Punch Edges
	5.2	Plane	Deformation
		5.2.1	Generalization of Flamant's Problem134
		5.2.2	Slope Under One-Sided Load137
		5.2.3	Wedge Pressed by Inclined Rigid Plates
		5.2.4	Penetration of Wedge and Load-bearing Capacity
			of Piles Sheet
		5.2.5	Wedge Under Bending Moment in its Apex
		5.2.6	Load-bearing Capacity of Sliding Supports
		5.2.7	Propagation of Cracks and Plastic Zones
			near Punch Edges
	5.3	Axisyr	nmetric Problem
		5.3.1	Generalization of Boussinesq's Solution
		5.3.2	Flow of Material within Cone
		5.3.3	Cone Penetration and Load-bearing Capacity
			of Circular Pile
		5.3.4	Fracture of Thick-walled Elements due to Damage 163
6	Ult	imate S	State of Structures at Finite Strains169
	6.1	Use of	Hoff's Method169
		6.1.1	Tension of Elements Under Hydrostatic Pressure 169
		6.1.2	Fracture Time of Axisymmetrically Stretched Plate 171

		6.1.3	Thick-Walled Elements Under Internal		
			and External Pressures		
		6.1.4	Final Notes		
	6.2		Fracture at Unsteady Creep		
		6.2.1	Tension Under Hydrostatic Pressure		
		6.2.2	Axisymmetric Tension of Variable Thickness Plate		
			with Hole		
		6.2.3	Thick-Walled Elements Under Internal		
			and External Pressures		
		6.2.4	Deformation and Fracture of Thin-Walled Shells		
			Under Internal Pressure		
		6.2.5	Thin-Walled Membranes Under Hydrostatic Pressure $\dots 184$		
		6.2.6	Two other Problems		
		6.2.7	Ultimate State of Anisotropic Plate		
			in Biaxial Tension		
Co	nclus	ion			
_	_				
Ref	feren	ces			
			400		
$\mathbf{A}\mathbf{p}$	pend	lices			
	O	4 . 4	*. C * C TO **** N. A. **** 1.1 3371 *.1.		
A			ion of p* for Brittle Materials Which		
	do 1	not Ke	sist Tension		
В	Val	ues of	K _σ in (3.127)		
		_			
С	Val	ues of	K' in (3.128)205		
D	Val	ues of	β_1,β_2 in Fig 4.33 and factors A, B in (4.88)207		
E	Ele:	of Ta	leal Plastic Material in Cone209		
E	FIO	w of Id	lear Plastic Material in Cone		
F	Cor	nnutat	ion of Strosses at Anti-plane Deformation		
-	of N	Asseif	putation of Stresses at Anti-plane Deformation assif with Crack and Moving Punch		
	OI I	1105511	with Crack and Moving Punch		
G	Son	an Con	nputations on Bending of Wedge215		
•	DOI	ie Coi	iputations on Dending of Wedge		
Н	Bas	es of A	Applied Creep Theory		
			-pp 0100p 211001j		
I	Ine	lastic 2	Zones Near Crack in Massif at Tension		
			ed Punch223		
J	Ine	lastic 2	Zones Near Crack and Punch Ends		
			ersal Shear		
K	Flo	w of M	Iaterial in Cone 227		

L	The Use of Hypotheses of Creep229
M	Use of the Coulomb's Law for Description of Some Elastic-Plastic Systems at Cycling Loading
N	Investigation of Gas Penetration in Polymers and Rubbers
o	Fracture of Optimal Profile Rotating Disk
P	Strength of Anisotropic Tubes at Different Loadings. Construction of Potential Function
$\mathbf{C}\mathbf{u}$	rriculum Vitae253
Inc	lex