Contents

Dr	efa	<u></u>	 v
\mathbf{r}	ша		v

Acknowledgments ---- VII

Acronyms — XIII

1	Introduction and preview —— 1
1.1	Introduction —— 1
1.2	Design technologies of system-level EMC engineering —— 2
1.2.1	Application demands of system-level EMC technology
	engineering —— 2
1.2.2	Research focus of design technology of system-level EMC
	engineering — 6
1.3	Design flow of system-level EMC engineering —— 24
1.4	Standards related to system-level EMC engineering design —— 24 References —— 35
2	Theory of system-level EMC —— 37
2.1	Basic concept —— 37
2.2	Electromagnetic interference sources —— 41
2.2.1	Conditions of EMI —— 41
2.2.2	Types of EMI sources —— 42
2.3	Theory of transmission and coupling of EM energy —— 42
2.3.1	Path of EMI coupling —— 44
2.3.2	Basic theory of conduction coupling —— 45
2.3.3	Basic theory of radiation coupling —— 50
2.4	Characteristic of EM sensitive sources — 60
2.4.1	Channel model of receivers —— 60
2.4.2	Blockage, crossover distortion, and intermodulation
	of receiver —— 61
2.5	Examples of application of EMC theory —— 62
	References —— 65
3	Engineering design of system-level EMC 67
3.1	Design method —— 67
3.2	Design principles —— 68
3.3	Design flow —— 69
3.3.1	Confirmation of boundary condition —— 70
3.3.2	Predictive analysis —— 71
3.3.3	Multilevel design —— 72

3.4	Content of design —— 72
3.4.1	Design of controlling the EM emission and sensitivity
	of equipment/subsystem —— 74
3.4.2	Design of controlling interantenna interference — 96
3.4.3	Design of controlling intercable interference — 99
3.4.4	Design of EM radiation protection —— 108
3.4.5	Design of lapping and grounding —— 124
3.4.6	Design of lighting protection —— 133
3.4.7	Design of electrostatic protection —— 136
3.4.8	Design of power supply —— 139
3.5	Examples of engineering design —— 142
	References —— 145
4	Theory and method of system-level EM simulation —— 147
4.1	EM simulation methods —— 147
4.1.1	Method of moments —— 150
4.1.2	Finite-difference time-domain method —— 157
4.1.3	High-frequency algorithms —— 165
4.1.4	High-low-frequency hybrid algorithms —— 173
4.1.5	Parallel computing for EM simulation —— 177
4.2	Examples of airborne antenna system-level EMC simulation —— 185
4.2.1	Radiation and coupling of airborne monopole antennas —— 185
4.2.2	Radiation of airborne microstrip-phased array antennas —— 187
4.2.3	Radiation of slotted waveguide-phased array antenna above
	a metal slab —— 200
4.2.4	Radiation of the airborne-slotted waveguide-phased array
	antenna —— 204
	References —— 214
5	Analysis of system-level EMC prediction —— 217
5.1	Theory of system-level EMC prediction —— 217
5.1.1	Equation of system-level EMC prediction —— 217
5.1.2	Transmitter model —— 218
5.1.3	Receiver model —— 223
5.1.4	Antenna model —— 226
5.1.5	Propagation model —— 232
5.2	Strategy of system-level EMC prediction —— 238
5.2.1	Step of system-level EMC prediction —— 238
5.2.2	Method of system-level EMC prediction —— 239
5.3	Introduction of EMC prediction software —— 246
5.3.1	Domestic and international EMC prediction software —— 246

5.3.2	EMC software for airborne platform —— 248
5.4	Examples of System-level EMC prediction —— 252
	References —— 258
6	Experiment and assessment of system-level EMC —— 259
6.1	EMC tests and experiment system frame —— 259
6.2	System-level EMC tests and experiment contents —— 259
6.2.1	Equipment-level/LRU-level EMC experiment —— 261
6.2.2	Subsystem/rack-level EMC experiment —— 261
6.2.3	Whole-system EMC experiment —— 265
6.2.4	Verification tests of EM environment adaptability —— 269
6.2.5	Test results and report details of system-level EMC experiment —— 270
6.3	Experimental facility and test field of EMC —— 271
6.3.1	Open area test site —— 271
6.3.2	Semianechoic chamber —— 272
6.3.3	Reverberation chamber —— 273
6.3.4	TEM chamber —— 276
6.3.5	GTEM chamber —— 276
6.3.6	Shielded room — 278
6.4	Evaluation method of system-level EMC experiment —— 278
6.4.1	Experiment method of EMI emission and EMS —— 278
6.4.2	Experiment method of system-level EMC —— 287
6.4.3	Evaluation method of system-level EMC —— 297
6.5	Typical evaluation platform for EMC experiment and examples
	of their application —— 300
6.5.1	Equipment-level and subsystem-level EMC verification system —— 300
6.5.2	Monitoring system of EM environment and EM spectrum —— 303
6.5.3	System of HPM excitation for EM environment —— 306
6.5.4	Verification and evaluation system for EM environmental
	effects —— 311
	References —— 318
7	Stage control of system-level EMC —— 319
7.1	Stage control technology of spatial EMC —— 322
7.1.1	Basic concept of spatial EMC control —— 322
7.1.2	Design flow of spatial EMC control —— 325
7.2	Stage control technology of frequency-domain EMC —— 328
7.2.1	Basic concept of frequency-domain distribution —— 329
7.2.2	Design flow of frequency management —— 331
7.3	Stage control technology of energy-domain EMC —— 336

7.3.1	Basic concept of filtering —— 336
7.3.2	Design flow of filtering —— 337
7.4	Stage control technology of time-domain EMC —— 338
7.4.1	Basic concept of time-domain EMC control —— 338
7.4.2	Design flow of time-domain EMC control —— 339
7.5	Application examples of system-level EMC control —— 340
7.5.1	Establish a mathematical model of the problem —— 341
7.5.2	Select an algorithm —— 342
	References —— 346
8	Applications in engineering projects and progress in new
	technologies — 347
8.1	Design of system-level EMC —— 347
8.1.1	Basic status of system-level EMC environment —— 348
8.1.2	Design of system-level EM environment — 348
8.2	Simulation of EMC prediction —— 351
8.2.1	Analysis of EMC prediction —— 351
8.2.2	Simulation of EMC prediction —— 351
8.3	System-level EMC test —— 352
8.3.1	Equipment-level/subsystem-level EMC test —— 352
8.3.2	System-level EMC test —— 354
8.4	System-level EMC control —— 357
8.4.1	Design control —— 357
8.4.2	Test control —— 359
8.5	System-level EMC evaluation —— 360
8.6	EMC new technologies and progress —— 361
8.6.1	Comprehensive design technology —— 362
8.6.2	New simulation prediction technology —— 366
8.6.3	New technology of measurement —— 367
8.6.4	New technology of EM spectrum control —— 370
	References —— 374

Index —— 375