Contents

Part I Introductory Material

1	Introduction						
	1.1		imulate Radiation Damage?	3			
	1.2		Classical Simulation as a Link in the				
			Scale Chain	6			
	1.3	How to	Read this Thesis	7			
	Refe	References					
2	A Radiation Damage Cascade						
	2.1	The Ea	rly Stages	9			
		2.1.1	Ion Channelling	9			
		2.1.2	Sub-Cascade Branching	11			
	2.2	The Di	splacement Phase	12			
	2.3		ermal Spike	12			
	Refe	rences .		13			
3	The Treatment of Electronic Excitations in Atomistic Simulations						
	of R	adiation	Damage—A Brief Review	15			
	3.1	The Theoretical Treatment of Radiation Damage					
	3.2	The Electronic Stopping Regime					
		3.2.1	General Concepts	18 18			
		3.2.2	Models of Fast, Light Particle Stopping	21			
		3.2.3	Expanding the Realm of Stopping				
			Power Theory	23			
		3.2.4	Models of Fast, Heavy Particle Stopping	27			
		3.2.5	Models of Slow, Heavy Particle Stopping	35			
		3.2.6	The Gaps in Stopping Power Theory	39			
	3.3 The Electron–Phonon Coupling Regime						
		3.3.1	The Importance of Electron-Phonon Coupling in	42			
			Radiation Damage	42			

digitalisiert durch

xii Contents

		3.3.2	Two-Temperature Models	44
		3.3.3	Representing the Electron–Phonon Coupling	45
		3.3.4	Models of Electron-Phonon Coupling	46
	3.4	Electro	onic Effects in Atomistic Models of	
		Radiati	ion Damage	49
		3.4.1	The Binary Collision Approximation	49
		3.4.2	Molecular Dynamics Models	51
	3.5	Improv	ring the Models: Incorporating Electrons Explicitly	57
	Refe	rences .		61
4	The	oretical I	Background	67
	4.1		ew	67
	4.2	The Se	emi-Classical Approximation	69
		4.2.1	The Ehrenfest Approximation	70
		4.2.2	The Approximations in Ehrenfest Dynamics	74
	4.3	The In-	dependent Electron Approximation	75
		4.3.1	Density Functional Theory	76
		4.3.2	Time-Dependent Density Functional Theory	80
	4.4	Tight-F	Binding Models	81
		4.4.1	Ab-Initio Tight-Binding	82
		4.4.2	Semi-Empirical Tight-Binding	83
		4.4.3	The Harris-Foulkes Functional	83
		4.4.4	Towards Semi-Empirical Tight-Binding	85
		4.4.5	Self-Consistent Tight-Binding	89
	4.5	Time-I	Dependent Tight-Binding	91
		4.5.1	The Description of the System	91
		4.5.2	The Evolution of our System	92
	4.6	Ehrenfe	est Dynamics	95
		4.6.1	Ehrenfest Dynamics versus Surface Hopping	95
		4.6.2	Energy Transfer in Ehrenfest Dynamics	98
	4.7	Conclu	sions	99
	Refe	rences .		99
Pa	rt II	Simulati	ing Radiation Damage in Metals	
5	A Fr	amewor	k for Simulating Radiation Damage in Metals	103
_	5.1		ple Model Metal	103
		5.1.1	The Parameters of the Model	105
		5.1.2	The Electronic Structure of the Model	106
		5.1.3	A Note on the Truncation of the	
		3.1.0	Hopping Integrals	108
	5.2	Ehrenfe	est Dynamics	109
	5.3		D: Our Simulation Software	110
		•		111

Contents xiii

6	The	Single O	Scillating Ion	113
	6.1	Simula	tions of a Single Oscillating Ion	114
	6.2	Simula	tion Results	116
		6.2.1	Frequency and Temperature Dependence of	
			Energy Transfer	117
		6.2.2	Position and Direction Dependence	117
	6.3	Theore	tical Analysis of the System	119
	6.4		ning the Results	123
		6.4.1	High Frequency Cut-Off	124
		6.4.2	Isotropic Damping about Equilibrium	
			Lattice Site	124
		6.4.3	Absence of Energy Transfer at	
			Some Frequencies	124
		6.4.4	Frequency Independence of β at	
			High Temperature	128
	6.5	Conclu	sions	131
	Refe	rences .		131
7	Semi	i-classica	d Simulations of Collision Cascades	133
	7.1	The Ev	volution of a Cascade	133
		7.1.1	Thermalization of the Initial Distribution	133
		7.1.2	The Evolution of the Ions	135
	7.2	The Ele	ectronic Subsystem	136
		7.2.1	The Evolving Electronic System	139
		7.2.2	Adiabaticity, Non-Adiabaticity and	
			Electronic Excitations	142
		7.2.3	Achieving Adiabatic Evolution by Altering	
			the Electron-Ion Mass Ratio	145
		7.2.4	The Irreversible Energy Transfer	151
	7.3	Conclu	sions	152
	Refe	rences .		152
8	The	Nature o	of the Electronic Excitations	153
	8.1	Pattern	s of Excitation in Collision Cascades	153
		8.1.1	Fitting a Pseudo-Temperature	155
		8.1.2	Why do we Obtain Hot Electrons?	158
		8.1.3	The Importance of the Result	161
		8.1.4	Thermalization or Thermal Excitation?	163
	8.2	Electro	nic Entropy in Ehrenfest Simulations	166
		8.2.1	Two Definitions of Electronic Entropy	167
		8.2.2	Reconciling the Two Entropies	168
		8.2.3	A Thought Experiment	168
	8.3	Conclu	sions	169
	Refe			170

xiv Contents

9	The :	Electroni	ic Forces	171	
	9.1	Underst	tanding the Electronic Force	172	
	9.2	The Eff	fect of Electronic Excitations on		
		the 'Co	nservative' Force	175	
		9.2.1	The Importance of the Reduction in the		
			Attractive Electronic Force	179	
		9.2.2	Replacement Collision Sequences	181	
	9.3		sions	186	
	Refer			187	
10	Channelling Ions				
10	10.1		lassical Simulations of Ion Channelling	190	
	10.1	10.1.1	The Simulation Set-Up	190	
		10.1.2	The Evolution of a Channelling Simulation	191	
		10.1.3	Challenges in Simulating Ion Channelling	192	
	10.2		State Charge	193	
	10.2	10.2.1	Results for a Non-Self-Consistent Model	193	
		10.2.1	A Perturbation Theory Analysis	198	
		10.2.2	The Effect of Channelling Direction	206	
		10.2.3	The Effect of Charge Self-Consistency	200	
		10.2.4	Parameters U and V	207	
	10.3	Electron	nic Stopping Power for a Channelling Ion	210	
	10.5			210	
		10.3.1 10.3.2	Results	210	
		10.5.2	The Origin of the Stopping Power:	212	
		10.2.2	A Tight-Binding Perspective	212	
		10.3.3	The 'Knee' in the Stopping Power	214	
		1024	for $U = V = 0$	214	
	10.4	10.3.4	Effect of Onsite Charge Self-Consistency	217	
	10.4		sions	221	
	Keter	rences	•••••	222	
11	The 1	Electroni	ic Drag Force	223	
	11.1	Is a Sin	nple Drag Model Good Enough?	224	
		11.1.1	An Investigation of Damping Models for		
			Total Energy Loss in Collision Cascades	224	
	11.2	The Mi	croscopic Behaviour of the Non-Adiabatic Force	227	
		11.2.1	The Non-Adiabatic Force in Ehrenfest Dynamics	227	
		11.2.2	The Character of the Non-Adiabatic Force	229	
	11.3	An Imp	roved Model of the Non-Adiabatic Force	230	
		11.3.1	A "Non-Adiabatic Bond Model"	231	
		11.3.2	The Performance of Our Proposed Model	235	
	11.4		sions	241	
	References				

Contents xv

12	Conc	luding Re	emarks	247
	12.1	Our Ain	ns	247
	12.2	Our Res	ults	248
		12.2.1	The Nature of the Electronic Excitations	248
		12.2.2	The Effect of Electronic Excitations on the	
			Conservative Forces	249
		12.2.3	Non-Adiabatic Effects on Channelling Ions	250
		12.2.4	The Non-Adiabatic Force in Collision Cascades	251
	12.3	Possible	Directions for Further Research	251
	Refer	ences		253
13	Anne	endices		255
	13.1		x A: Selected Proofs	255
	15.1	13.1.1	Proof of Equation (4.10)-(i)	255
		13.1.2	Proof of Equation (4.10)-(ii)	256
		13.1.3	Proof of Equation (4.12)	256
		13.1.4	Proof of Equation (4.28)	257
		13.1.5	Proof of Equation (4.85)	258
		13.1.6	Proof of Equation (4.86)	259
		13.1.7	Proof of Equation (4.102)	260
		13.1.8	Proof of Equation (4.131)	261
		13.1.9	Proof of Equation (4.135)	262
		13.1.10	Proof of Equation (4.137)	263
		13.1.11	Proof of Equation (4.141): The conservation	
			of total energy	264
		13.1.12	Proof of Increase of Pseudo-Entropy (8.16)	266
		13.1.13	Proof of Equation (9.4)	267
		13.1.14	Proof that $\operatorname{Im}\{\mathbf{f}_4\} = 0 \dots$	268
		13.1.15	Proof of Equation (11.9)	269
		13.1.16	Proof of Equation (11.12)	270
		13.1.17	Proof of Equation (11.18)	270
	13.2	Appendi	x B: Perturbation Theory	272
		13.2.1	A Periodic Perturbation	274
		13.2.2	The Effect of a Sinusoidal Perturbation	
			on an Electronic System	276
		13.2.3	A Quantum Mechanical Oscillator	283
	13.3		x C: The Coupling Matrix for a Single	
			ng Ion	286
	13.4	Appendi	x D: Some Features of the Electronic Excitation	-
		Spectrum in Collision Cascades		
		13.4.1	Anomalous Excitations Early in the Cascade	289
		13.4.2	The Width of the Temperature Fitting Window	290
		13.4.3	The Sommerfeld Expression for the Heat Capacity	
			of Our Model	291

xvi Contents

	13.4.4 Behaviour of the Fitted Temperature Early	
	in the Cascade	294
13.5	Appendix E: The Strain on an Inclusion due to	
	Electronic Heating	294
Refer	rences	297
Index		299